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Abstract

Electrical patterns of brain activity form the basis of everything from perception1

and movement to complex behaviors like decision-making and conscious thought.2

While terabytes of human intracranial electroencephalography (iEEG) recordings3

are openly available, deciphering and productively using them for downstream4

use cases remains a challenging problem. We present Contrastive Neural Fore-5

casting (CNF), a simple self-supervised framework for learning representations6

of population-level neural activity across electrodes, time, and individuals from7

unlabeled data at scale. The CNF objective requires the model to predict future8

neural states in its latent space using cross-entropy over batched data samples.9

Our objective is designed to resolve two major challenges in traditional MSE-10

based autoencoding approaches. Forecasting in the latent space relieves the model11

from overfitting to noise that is inherent in the data, and the cross-entropy loss12

enables flexible capturing of high-dimensional, multimodal distributions under-13

lying the evolution of neural dynamics. We validate the superior performance of14

the contrastive objective on BrainBERT, and then train and open-source CNF-1,15

a foundation model for human iEEG. We pretrain end-to-end directly from raw16

voltage traces, without relying on handcrafted features or frequency band filtering.17

While still closely followed by the linear baselines, which we found in many cases18

score higher than other pretrained models, CNF-1 achieves state-of-the-art perfor-19

mance on a suite of downstream decoding tasks. Surprisingly, and challenging20

assumptions made in prior work, we obtain better performance by omitting the21

spatial location of the electrodes from the embeddings, instead allowing the model22

to learn its own channel-specific parameters. We show how CNF-1 can enable23

novel approaches to extract neuroscientific insight from unlabeled data at scale. We24

envision future clinical applications such as real-time functional region mapping25

and model-guided electrical stimulation interventions in the operating room, as26

well as next-generation brain-computer interfaces. Taken together, our work paves27

the way for scalable brain foundation models trained entirely from observational28

data.29

1 Introduction30

The human brain continuously processes rich, overlapping streams of information: from interpreting31

speech and recognizing objects to reasoning about complex events [Schurz et al., 2014]. Despite32

considerable progress in neuroscience over the past decades, building a comprehensive computational33

model of the brain, where the brain state can be decoded, simulated, and interfaced with seamlessly,34

remains a formidable challenge [Sejnowski et al., 2014]. Through invasive and non-invasive stimu-35

lation interventions, these models could enable personalized treatments for neurological disorders36

such as epilepsy [Herron et al., 2024, Morrell, 2011], and through superior decoding and encoding37
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capabilities enhance communication between brains and machines as well as between brains and38

other brains [Pereira et al., 2018].39

Foundation models have transformed fields like natural language processing and computer vision,40

offering unparalleled performance across tasks and datasets [Bommasani et al., 2021, Brown et al.,41

2020]. Yet, their potential in neuroscience remains untapped. Even if brain foundation models42

(such as transformers pretrained on large volumes of data) do not provide simple and interpretable43

models of brain function, their capacity for capturing complex and high-dimensional relationships44

across brain areas, time, and individuals positions them as powerful tools for advancing medicine and45

neuroscience [Parvizi and Kastner, 2012].46

Human intracranial encephalography (iEEG) offers brain interfacing at an unprecedented combination47

of spatial and temporal resolution. However, these raw voltage time series are noisy, high-dimensional,48

highly nonlinear, and non-trivially dependent on physiological variables [Noury et al., 2016, Buzsáki49

et al., 2012], which has been a major obstacle to gaining useful insight using this data and to creating50

new tools and treatments relying on iEEG.51

Our work introduces Contrastive Neural Forecasting (CNF), a simple self-supervised framework52

for learning population-level representations of human brain dynamics. We propose path toward53

general-purpose brain models that excels by learning directly from raw voltage traces, without54

requiring knowledge of electrode locations or prior domain-specific assumptions.55

Contributions The key contributions of this work are:56

• We propose a contrastive predictive learning objective tailored for neural time series data57

that forecasts future neural states in latent space using a cross-entropy loss over real samples,58

enabling flexible modeling of high-dimensional, multimodal distributions underlying neural59

dynamics. We validate this objective by showing its superior performance when pretraining60

BrainBERT [Wang et al., 2023].61

• Our proposed objective enables the unification of representation learning from single channel62

voltage traces with population activity over the whole brain by combining information from63

many electrodes, without the need for pretrained channel feature extractors or spectrogram64

encoders, handcrafted features, or frequency-based preprocessing.65

• We propose the use of learned electrode embeddings for modeling of iEEG data. Our66

method learns without access to spatial information about electrodes, recovering it during67

pretraining in a puerly data driven way, challenging the assumption that spatial embeddings68

are necessary for accurate neural modeling.69

• We introduce CNF-1, a foundation model trained end-to-end on raw iEEG voltage traces70

across individuals and electrodes, achieving state-of-the-art performance on multiple decod-71

ing benchmarks. We release the pretrained CNF-1 model and codebase to promote further72

research on scalable, general-purpose brain foundation models (upon publication).73

1.1 Related work74

Foundation Models for Neural Data. Neuroformer introduced a multimodal, multitask generative75

pretrained transformer tailored for systems neuroscience, capable of associating behavioral and neural76

representations through joint training [Antoniades et al., 2024]. BrainBERT [Wang et al., 2023] learns77

representations from single channels of intracranial EEG in a self-supervised manner by predicting78

masked out spectrograms. Our work The Population Transformer (PopT, Chau et al. [2024]) and79

[Zhang et al., 2023] extended pretrained embeddings from BrainBERT to enable decoding on the80

population level. We provide two main improvements that raise the performance of the model: the81

contrastive forecasting objective as opposed to the naïve MSE approach and learnable electrode82

embeddings instead of positional coordinate embeddings. Learnable embeddings were introduced83

by [Azabou et al., 2023] for the single unit modeling. We use the same learned embeddings and84

adapt them for the continuous iEEG signal. NDT2 emphasized large-scale spatiotemporal pretraining85

for neural spiking activity, facilitating adaptation to novel contexts in decoding tasks [Ye et al.,86

2023]. Foundation models for neural data have been developed for single unit activity and fMRI [Liu87

et al., 2022, Cai et al., 2023, Dong et al., 2024], however our work focuses specifically on human88

intracranial EEG. For a review of brain foundation models, see Zhou et al. [2025].89
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Figure 1: Overview of the Contrastive Neural Forecasting approach. (a) The neural activity
timeseries is binned and split into two parallel streams: target and context. Each target timebin is
encoded separately, and the whole timeseries is shifted forward by one timebin. The context stream is
randomly masked in both the electrode and the time dimensions, and passed into the context encoder
and then into the predictor. The target and context stream are compared using the InfoNCE objective,
(b). The features generated by the model are compared with the corresponding electrode and timebin’s
features of every other item in the batch, and the InfoNCE objective requires that the corresponding
pairs from the same item in the batch are close together in the feature space, and far away from the
features of other items in the batch. All of the model components are trained end-to-end.

Contrastive representation learning. Contrastive Predictive Coding was first introduced by [van den90

Oord et al., 2019] for representation learning, and successfully applied at scale by CLIP for language-91

image pretraining [Radford et al., 2021]. We adapt these concepts from the ML literature to our92

neural data setting. STNDT [Le and Shlizerman, 2022], in a single unit spiking modeling setting,93

used contrastive learning as an auxillary loss to further augment the data and constrain the model.94

Similarly, [Vishnubhotla et al., 2023] use contrastive learning to learn representations for spike sorting95

of single units. We too use contrastive learning, but directly for building models of continuous iEEG96

signal.97

2 The Contrastive Neural Forecasting approach98

In this section, we overview the main components of our approach (Figure 1): predicting the future99

latent representation of the signal and the contrastive forecasting objective based on the cross-entropy100

loss. We assume that the neural data originates from a set of M channels (e.g., electrodes in the101

brain), sampled at a constant rate to produce T data segments of length τ each, where τ is the desired102

binning size for predictive modeling. Let’s denote x
(m)
t as the data sample from channel m ≤ M103

at time t ≤ T . In the self-supervised learning setting, one is interested in modeling the distribution104

of masked data conditioned on unmasked data. As an illustrative example, let’s say we want to105

autoregressively predict the joint distribution of the signal at time t+ 1 using the previous T time106

steps: p(x1
t+1...x

M
t+1 | x1

1...x
M
t ). One approach, prevalent in the literature [Wang et al., 2023, Zhang107

et al., 2023], is to define a parametrized predictive function F (i.e. a neural network), and train108

the parameters to minimize the mean squared error (MSE) between the predicted and true masked109

datapoints:110

LMSE =
∑
i

∥∥x̂i
t+1 − xi

t+1

∥∥2 , (1)

where x̂i
t+1 = F (i, x1

1...x
M
t ) denotes the prediction of the model.111

Despite the popularity of this approach, it has two flaws. First, in settings with an inherently high112

level of noise, typical for recordings from intracranial electrodes, the MSE objective punishes the113

model for poorly fitting the noise, encouraging overfitting to the noise pattern of the training dataset.114

Further, these signals tend to be temporally autocorrelated.115

The second flaw is in the implicit assumption that underlies the choice of MSE as the objective:116

that the distribution of masked timepoints can be effectively captured with a unimodal Gaussian117
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centered around the mean which is equal to the prediction of the model (for an overview of this118

equivalence, see Bishop [2006]). This assumption is not justified in our setting of interest. In practice,119

the dynamical system is partially observed (the dimensionality of the signal, M < 300, is negligible120

compared to the roughly 80 billion neurons in the brain), meaning that the observed input data put121

very mild constraints on the multimodal distribution of the future evolution of the observed data.122

To overcome these challenges, we introduce Contrastive Neural Forecasting. In CNF, the input data123

is encoded with the context encoder Econtext and passed into a predictor P , and then compared to124

the encoding of target data by a target encoder Etarget. Specifically, we use the InfoNCE objective,125

which pushes the predicted embedding P (Econtext(x
1
1...x

M
t )) to be close to the embedding of the126

real target Etarget(x
1
t+1...x

M
t+1) and far from the embeddings of other random timesamples in the127

dataset. Formally, given a set of N random negative samples with timepoints t′1, ..., t
′
N , the InfoNCE128

loss is defined as:129

LInfoNCE = − log
exp

(
P (Econtext(x

1
1...x

M
t )) · Etarget(x

1
t+1...x

M
t+1)/τ

)∑N
j=1 exp

(
P (Econtext(x1

1...x
M
t )) · Etarget(x1

t′j
...xM

t′j
)/τ

) , (2)

where · denotes cosine similarity (dot product over the normalized features), and τ is a temperature130

hyperparameter. In practice, this objective is efficiently implemented as the cross-entropy loss over131

the batch dimension, meaning that negative samples for every item in the batch are taken from the132

other items encountered in the same batch.133

This formulation has three advantages. First, it automatically ensures that there is no incentive for the134

model to encode noise in its latent space, where noise is defined as anything that is not helpful to135

disambiguate the true future neural state from other random examples of neural states. Second, it136

doesn’t place assumptions (such as unimodality) on the distribution of the future timestep. Finally, it137

turns the hard problem of modeling the high-dimensional, continuous distribution of the neural signal138

into the “easy" problem of multi-class classification using the cross-entropy loss.139

In the next sections, we describe the experiment setup and results that demonstrate these advantages.140

3 Experimental Setup141

Data To train and evaluate the performance of our objective, we use the publicly available Brain-142

Treebank dataset [Wang et al., 2024]. The dataset consists of 43 hours of intracranial SEEG recordings143

from 10 human subjects (ages 4–19) implanted with a total of 1,688 electrodes while passively watch-144

ing 26 full-length Hollywood films. It includes aligned audio-visual and language annotations for145

over 223,000 words across nearly 39,000 sentences, offering high temporal and spatial resolution146

data suitable for multimodal neural decoding and large-scale modeling.147

Decoding evaluation tasks We evaluate models on a suite of 14 standardized neural decoding148

tasks spanning vision, audio, language, and multimodal domains, derived from the annotations in149

the BrainTreebank dataset, such as audio volume, optical flow direction, face count, word onset,150

LLM surprisal score, part-of-speech, speaker identity, etc. All of the tasks are formalized as binary151

classification by thresholding the annotations. The models are tasked with classifying the task labels152

from voltage traces of length 1 second aligned to each word onset. This decoding benchmark contains153

labeled neural data from 12 recording sessions across 6 individuals. We evaluate the models by154

fine-tuning on each task’s training split, and testing on the non-intersecting test split that was taken155

from a different recording session. For more details about the decoding tasks, see Appendix A.156

Models We bin the neural data sampled at 2048 Hz into bins of 256 samples each (125 ms). The157

target encoder Etarget is a simple linear layer from the raw 256-dimensional feature vector into158

the dmodel = 192 dimensional latent space. For the initial validation experiments, we reimplement159

a context encoder scaled-down version of the BrainBERT architecture [Wang et al., 2023] for160

computational efficiency, which we call BrainBERT-mini. BrainBERT-mini is a transformer encoder161

stack [Vaswani et al., 2023] with N = 4 layers and the hidden dimension size 192 with 12 attention162

heads per layer. For CNF-1, the context encoder (Figure 2a) is a transformer with 4 layers, hidden163

dimension dmodel, that takes as input tokens which are 16 consecutive samples of the input data and164

produces the latent representations of dimensionality dmodel, and 4 attention heads per layer. The165

outputs of the context encoder are concatenated to produce chunks of 256 samples for the next model166
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Figure 2: Architecture and training dynamics of CNF-1. Neural data sampled at 2048 Hz is
binned into 125 ms segments (256 samples). The target encoder is a linear projection from 256 to
a 192-dimensional latent space. The context encoder (a) is a 5-layer Transformer with 12 attention
heads and hidden size 192, operating on tokens of 16 consecutive samples. The predictor (b) takes
per-channel, per-timebin representations, adds learned electrode embeddings, and processes them
through another 5-layer Transformer. Its outputs are compared with future target embeddings using
the InfoNCE loss.

stage. The predictor (Figure 2b) takes in these representations for each channel i ≤ M and timebin167

t ≤ T = 1 second, which are added to the learned per-channel electrode embeddings Ki (see next168

subsection), and again outputs the features of dimensionality dmodel for every token by passing them169

through 5 layers of 12 attention heads each.170

Pretraining For BrainBERT-mini experiments, we follow the approach of [Wang et al., 2023]. For171

the masking scheme, we set all data in p = 10% of timebins to 0, only passing the masked timebins172

into the objective (either MSE or our InfoNCE contrastive objective for this experiment). For CNF-1,173

the representations from its predictor output layer are then compared with the corresponding target174

embeddings for the following future timebin, using the InfoNCE objective as described in the previous175

section. For all models, we use a context of neural data of length 2 seconds. BrainBERT-mini176

is trained for 100 epochs on a small dataset containing just one subject’s session data. CNF-1 is177

trained for 10 epochs (CNF-1) on data from 20 sessions from all 10 subjects in the dataset. We train178

all networks with learning rate 0.003, the Muon optimizer [Jordan et al., 2024], and learning rate179

scheduling of 100 steps of warmup followed by linear decay to 0. The networks are trained on a180

single A100 GPU for 10 hours (CNF-1) or 2 hours (BrainBERT-mini).181

Electrode embeddings To provide the Predictor transformer with the information about which182

channel each signal comes from in the brain, we allow the model to learn additional separate vectors183

of dimensionality dmodel for each channel 1 ≤ i ≤ M in the dataset, implementing the technique184

used by [Azabou et al., 2023] for the single unit modeling. We contrast this approach with the185

prior iEEG-based approaches [Zhang et al., 2023, Chau et al., 2024] that provide coordinates of186

each channel via cosine positional embeddings. Empirically, we find higher performance with fully187
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learned embeddings, when not providing any spatial information of the electrodes into the model (see188

Appendix B).189

Baselines and previous methods We compare the performance of our model to six different190

baselines and previous methods for feature learning on human intracranial EEG data:191

• Linear regression from the raw voltage segments, aligned to the word onset.192

• Linear regression from the spectrogram of the signal, normalized per frequency bin.193

• Linear regression from the Fourier transform features (which include both magnitude and194

phase information of the frequency bands).195

• Population Transformer Chau et al. [2024], a previous state of the art in representation196

learning from human intracranial EEG on the BrainTreebank dataset. We compare against197

frozen PopT (only fine tuning the output linear layer and keeping the model weights frozen),198

and a end-to-end finetuned PopT for each task.199

• BrainBERT [Wang et al., 2023], a single-electrode representation extractor from iEEG on200

the same BrainTreebank dataset. For this evaluation, the features from every electrode are201

concatenated together before passing them into the linear regression layer to obtain the final202

prediction of the task label.203

For more detail on baselines and previous methods, see Appendix C.204

4 Results205

Training objective Mean decoding AUROC (14 tasks)

MSE loss (voltage) 0.638 ± 0.008
MSE loss (spectrogram) 0.598 ± 0.009

Contrastive (voltage, latent space) 0.653 ± 0.010
Contrastive (spectrogram, latent space) 0.631 ± 0.011

Contrastive (voltage, data space) 0.664 ± 0.011
Contrastive (spectrogram, data space) 0.632 ± 0.010

Table 1: In pretraining BrainBERT-mini, the contrastive objective performs better than the
traditional MSE loss across 14 decoding tasks. Trained for 100 epochs using the Muon optimizer.
The weights of the models are frozen after pretraining with no labels, and a linear regression is
applied on the features of the frozen models to obtain the AUROC (mean ± SEM). The bolded entries
indicate best performance (within one SEM of each other).

Superior performance of the contrastive pretraining objective when training BrainBERT-mini206

First, we seek to validate the performance of the contrastive objective on an established architecture207

from past literature - a scaled-down version of BrainBERT [Wang et al., 2023]. After the pretraining208

phase with no labels concludes, we freeze the model and fine-tune only a single linear layer on top of209

the model features on our downstream tasks of interest, in order to assess the quality of the generated210

representations, with results shown in Table 1. Our findings demonstrate that the contrastive loss211

performed better than its MSE counterpart in all experimental conditions (training on raw voltage212

vs spectrogram of the signal). Furthermore, we find that pretraining on raw voltage instead of the213

spectrogram of the signal, as often done in prior work, is beneficial for downstream performance214

across many tasks. Taking insight from this smaller scale experiment, we next scale up our pretraining215

to a larger chunk of the dataset, larger models, and expand to the population level information as216

opposed to only single electrode with CNF-1.217

CNF-1 achieves state-of-the-art performance across the decoding tasks We train CNF-1 on the218

BrainTreebank dataset for 10 epochs and note that the model gets better at discriminating the true219

next timestep from random samples over the course of training (Figure B). To assess the quality of220

the representations learned by our model, and compare it to previously published models, we finetune221
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Figure 3: CNF-1 achieves state-of-the-art performance on a suite of benchmark decoding tasks,
across subjects and sessions. We evaluate CNF-1, as well as baseline models and models from
previous work, on 14 tasks that span language and visual domains, on 12 total recording sessions
from 6 human subjects. We find that generally the linear baseline performs surprisingly well, at times
outperforming pretrained models. CNF-1 (our model) outperforms all the considered pretrained
models as well as all of the considered baselines overall.

the final linear layer that projects the features into a single output dimension on a suite of downstream222

decoding tasks (Figure 3). We find that generally the linear baseline performs surprisingly well, and223

surprisingly find that previous state of the art models, while outperforming all of the considered224

baseline methods on some tasks, fall behind them on others. we associate the lower performance of the225

BrainBERT and PopT models on some tasks with the low performance of the spectrogram regression226

baseline: spectrogram of the input signal is the base representation that both of these models use as227

input, and the baseline task decoding performance for some tasks (e.g. GPT-2 Surprisal, Word Length,228

Head Word Position etc) requires phase information as well, which is lost when taking the power229

spectrogram. In our experiments, we also found that pretraining often boosts decoding performance230

for some tasks (especially Onset and Speech) while decreasing the downstream performance on most231

other tasks.232

While still close to the baselines, CNF-1 outperforms all the considered pretrained models and233

baselines (Figure 3, top left corner). While for PopT the performance peaks at some tasks and234

drops for others, CNF-1 shows a more uniform pattern of performance, suggesting that it contains235

representations that capture more aspects of the neural processing. The state-of-the-art performance236

of CNF-1 shows the potential and behind the Contrastive Neural Forecasting approach.237

Investigating the learned electrode embeddings We now turn to what can be discovered in the238

data-driven way using our foundation model. An innovation from prior work is our entirely learned239

electrode embeddings, which replace the traditional coordinate positional embeddings.240

We conjecture that over the course of training, the model may discover relationships between the input241

channels, and use the learned embedding parameters to store them across batches and employ them to242

improve the performance on the predictive objective. To test this hypothesis, we freeze the pretrained243

model and examine its learned electrode embeddings (example subject is shown in Figure 4). Across244

all pairs of electrodes, we find that the distance in embedding space of the model is strongly correlated245

with the physical distance between the electrodes in the brain (Figure 4a, r = 0.400, p < 0.001),246

despite the fact that spatial information was never available in pretraining. Furthermore, a t-SNE247

dimensionality analysis reveals spatially clustered groups of electrodes (Figure 4b) that are roughly248

corresponding to the gross anatomical and functional subdivision of the brain (Figure 4c). We note249

the consistent difference in the embeddings for the frontal, temporal and occipital lobe electrodes,250
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Figure 4: Learned electrode embeddings correlate with rough anatomical and functional brain
regions, recovering them in a pure data-driven way. (a) Distance in the embedding space of
the learned electrode embeddings is correlated with the distance in physical space in the brain,
even though the spatial information was never made available during training. (b) Dimensionality
reduction (t-SNE) reveals clustering of the electrode embeddings in the latent space, with the clusters
generally grouping together according to the coordinate in the physical space. (c) Visualization of the
t-SNE reduction result on an inflated map of the brain, which shows the anatomical locations of the
embeddings. The results are shown for a representative Subject 3.
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SEEG
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Decoding from Raw Voltage Foundation Model Features

Figure 5: Foundation models enable effective functional mapping of brain regions. Validation
of the model on an open human intracranial electroencephalography data (StereoEEG). For a given
StereoEEG depth probe, we simulate a language mapping setting where the patient engages in an
experimental task with two conditions: speech processing and non-speech. Then, we use either raw
voltage (left) or features from our frozen foundation model (right) to decode GPT2 surprisal, as an
indication of language processing, from every 125 ms timebin and every contact on the probe. The
resulting model enabled stronger decoding of speech onset events than the raw voltage inputs. The
probe spans multiple locations in the patient’s brain, enabling localization of the functional language
processing region. Model: causal transformer, 5 layers, model hidden dimension 128, 4 attention
heads per block, sampling rate 2048 Hz. Trained for 1000 steps with batch size 128 with Contrastive
Neural Forecacsting, using the Muon optimizer, learning rate 0.003, no weight decay.

as well as the language-selective parts of the superior temporal lobe, which suggests that the model251

rediscovered the gross anatomical layout of the brain.252

Mapping function of brain regions with the foundation model features Next, we validate a253

practical application of our foundation model for functional brain mapping in a clinical setting. A254

standard protocol in neurosurgery involves identifying brain regions involved in critical functions,255

such as language processing, to guide tissue resection [Aron et al., 2021]. Traditionally, this relies on256

visually inspecting raw intracranial recordings for stimulus-locked activity differences, which may be257

subtle or ambiguous.258
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We propose using features extracted from our pretrained model to improve the clarity of this mapping.259

In Figure 5, we compare the decodability of one of our features connected with language processing260

(GPT-2 surprisal) across time and electrode contacts using raw voltage versus foundation model261

representations. The model-derived features yield a much sharper spatial and temporal decoding262

profile, revealing a more localized and time-locked peak in language-related activity along the probe.263

This result demonstrates that we can enhance functional mapping by amplifying task-relevant signals264

that may be difficult to detect in the raw data.265

5 Discussion266

Our results show that Contrastive Neural Forecasting (CNF) is a viable and scalable framework267

for learning population-level representations of human intracranial neural activity directly from268

raw voltage data. By forgoing handcrafted features and instead predicting future neural states in269

latent space using a contrastive objective, CNF avoids several limitations of traditional approaches,270

chiefly overfitting to noise and inflexibility in modeling multimodal dynamics. CNF-1 achieves271

state-of-the-art decoding performance across a diverse suite of language and vision tasks.272

One striking finding of our work is the effectiveness of learned electrode embeddings in the absence273

of spatial coordinate information, reaffirming findings by Azabou et al. [2023]. Not only does this274

challenge prevailing assumptions in neural modeling, but it also suggests that useful structural priors275

can emerge from data alone when trained at scale, opening new opportunities for interpretability in276

foundation models of brain activity. Future work will examine the possibility of delineating functional277

and/or anatomical brain regions [Glasser et al., 2016] based solely on the activity statistics using278

foundation models such as CNF-1.279

Limitations Our work has several limitations and directions for future research. First, our model280

outperforms linear baselines by only a small amount, and there is clearly room to grow. We anticipate281

that training on datasets beyond the BrainTreebank, as well as incremental architecture and training282

process improvements will greatly enhance the performance of our models. In addition, future work283

may explore multimodal extensions that incorporate neural data with information about the sensory284

inputs such as the viewed video. This can be achieved by incorporating CLIP representations of the285

visual inputs and/or wav2vec or other audio representations (this data is available in datasets such as286

BrainTreebank, but not used in this work).287

More broadly, we view CNF as part of an emerging class of tools that treat the brain as a sequence-288

generating system that is amenable to the same powerful modeling techniques that have revolutionized289

NLP and vision. In this framing, iEEG signals become the neural analogue of text or pixels: high-290

dimensional, temporally structured data with rich latent dynamics.291

Broader impacts Importantly, our results support the broader vision of brain foundation models292

(BFMs): pretraining once on large-scale observational recordings and reusing these representations293

for a wide range of downstream clinical and scientific applications [Zhou et al., 2025]. For example,294

we show that CNF-1 can enable real-time functional brain mapping, which could be used in clinical295

settings such as operating rooms during brain resection surgeries [Richardson, 2022] to define296

surgical and non-surgical targets. Thus, we anticipate this approach could accelerate workflows in297

neurosurgery, diagnosis, and closed-loop brain-computer interfaces. The usecases of foundation298

models should be strictly vetted to adhere to the ethical regulations, especially in the medical usecases299

and when involved in decision making impacting human lives [Gordon and Seth, 2024].300

Beyond the clinic, foundation models like CNF-1 offer exciting opportunities in basic neuroscience.301

By unifying single-channel and population-level representations in a single model, CNF-1 can302

help researchers probe the functional roles of specific brain regions, and simulate the evolution303

of neural dynamics under different conditions, and generate new hypotheses to be tested in vivo304

based on the findings in the foundation models (inception loops; Wang et al. [2025], Walker et al.305

[2019]). Moreover, as brain foundation models grow larger and more expressive, they may serve as306

computational proxies for in silico experimentation.307

Taken together, CNF represents a step toward a general-purpose framework for modeling brain308

dynamics, supporting the development of robust, scalable, and clinically useful brain-computer309

interfaces and tools in neuroscience and medicine.310
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made in the paper.426
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contributions made in the paper and important assumptions and limitations. A No or428

NA answer to this question will not be perceived well by the reviewers.429
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much the results can be expected to generalize to other settings.431

• It is fine to include aspirational goals as motivation as long as it is clear that these goals432
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2. Limitations434

Question: Does the paper discuss the limitations of the work performed by the authors?435

Answer: [Yes]436

Justification: We included a limitations sections in our Discussion section.437
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• The answer NA means that the paper has no limitation while the answer No means that439

the paper has limitations, but those are not discussed in the paper.440
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Justification: This paper does not introduce any theory results or theorems, only showing469
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of the paper (regardless of whether the code and data are provided or not)?485
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Justification: Our approach and architectures used for pretraining are described in the487

Approach and Experimental Setup sections in detail, as well as in the included Appendix; in488

addition, the code will be released upon publication.489
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• The answer NA means that the paper does not include experiments.491

• If the paper includes experiments, a No answer to this question will not be perceived492

well by the reviewers: Making the paper reproducible is important, regardless of493

whether the code and data are provided or not.494

• If the contribution is a dataset and/or model, the authors should describe the steps taken495

to make their results reproducible or verifiable.496

• Depending on the contribution, reproducibility can be accomplished in various ways.497

For example, if the contribution is a novel architecture, describing the architecture fully498

might suffice, or if the contribution is a specific model and empirical evaluation, it may499

be necessary to either make it possible for others to replicate the model with the same500

dataset, or provide access to the model. In general. releasing code and data is often501

one good way to accomplish this, but reproducibility can also be provided via detailed502

instructions for how to replicate the results, access to a hosted model (e.g., in the case503

of a large language model), releasing of a model checkpoint, or other means that are504

appropriate to the research performed.505

• While NeurIPS does not require releasing code, the conference does require all submis-506

sions to provide some reasonable avenue for reproducibility, which may depend on the507

nature of the contribution. For example508

(a) If the contribution is primarily a new algorithm, the paper should make it clear how509

to reproduce that algorithm.510

(b) If the contribution is primarily a new model architecture, the paper should describe511

the architecture clearly and fully.512

(c) If the contribution is a new model (e.g., a large language model), then there should513

either be a way to access this model for reproducing the results or a way to reproduce514

the model (e.g., with an open-source dataset or instructions for how to construct515

the dataset).516

(d) We recognize that reproducibility may be tricky in some cases, in which case517

authors are welcome to describe the particular way they provide for reproducibility.518

In the case of closed-source models, it may be that access to the model is limited in519

some way (e.g., to registered users), but it should be possible for other researchers520

to have some path to reproducing or verifying the results.521

5. Open access to data and code522
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Question: Does the paper provide open access to the data and code, with sufficient instruc-523

tions to faithfully reproduce the main experimental results, as described in supplemental524

material?525

Answer: [Yes]526

Justification: We release the Github repository with all of the code required to train the527

models and reproduce the experiments, as well as the model weights, upon publication.528

Guidelines:529

• The answer NA means that paper does not include experiments requiring code.530

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/531

public/guides/CodeSubmissionPolicy) for more details.532

• While we encourage the release of code and data, we understand that this might not be533

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not534

including code, unless this is central to the contribution (e.g., for a new open-source535

benchmark).536

• The instructions should contain the exact command and environment needed to run to537

reproduce the results. See the NeurIPS code and data submission guidelines (https:538

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.539

• The authors should provide instructions on data access and preparation, including how540

to access the raw data, preprocessed data, intermediate data, and generated data, etc.541

• The authors should provide scripts to reproduce all experimental results for the new542

proposed method and baselines. If only a subset of experiments are reproducible, they543

should state which ones are omitted from the script and why.544

• At submission time, to preserve anonymity, the authors should release anonymized545

versions (if applicable).546

• Providing as much information as possible in supplemental material (appended to the547

paper) is recommended, but including URLs to data and code is permitted.548

6. Experimental setting/details549

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-550

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the551

results?552

Answer: [Yes]553

Justification: We provide information about our pretraining, architecture, and hyperparame-554

ters, and optimizer in the Experimental Setup section in the paper.555

Guidelines:556

• The answer NA means that the paper does not include experiments.557

• The experimental setting should be presented in the core of the paper to a level of detail558

that is necessary to appreciate the results and make sense of them.559

• The full details can be provided either with the code, in appendix, or as supplemental560

material.561

7. Experiment statistical significance562

Question: Does the paper report error bars suitably and correctly defined or other appropriate563

information about the statistical significance of the experiments?564

Answer: [Yes]565

Justification: For our empirical results, we report standard error across cross-val folds, as566

well as across subjects in case of evaluating on data from multiple subjects.567

Guidelines:568

• The answer NA means that the paper does not include experiments.569

• The authors should answer "Yes" if the results are accompanied by error bars, confi-570

dence intervals, or statistical significance tests, at least for the experiments that support571

the main claims of the paper.572
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• The factors of variability that the error bars are capturing should be clearly stated (for573

example, train/test split, initialization, random drawing of some parameter, or overall574

run with given experimental conditions).575

• The method for calculating the error bars should be explained (closed form formula,576

call to a library function, bootstrap, etc.)577

• The assumptions made should be given (e.g., Normally distributed errors).578

• It should be clear whether the error bar is the standard deviation or the standard error579

of the mean.580

• It is OK to report 1-sigma error bars, but one should state it. The authors should581

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis582

of Normality of errors is not verified.583

• For asymmetric distributions, the authors should be careful not to show in tables or584

figures symmetric error bars that would yield results that are out of range (e.g. negative585

error rates).586

• If error bars are reported in tables or plots, The authors should explain in the text how587

they were calculated and reference the corresponding figures or tables in the text.588

8. Experiments compute resources589

Question: For each experiment, does the paper provide sufficient information on the com-590

puter resources (type of compute workers, memory, time of execution) needed to reproduce591

the experiments?592

Answer: [Yes]593

Justification: we specify the computational requirements when describing pretraining in our594

Experimental Setup section.595

Guidelines:596

• The answer NA means that the paper does not include experiments.597

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,598

or cloud provider, including relevant memory and storage.599

• The paper should provide the amount of compute required for each of the individual600

experimental runs as well as estimate the total compute.601

• The paper should disclose whether the full research project required more compute602

than the experiments reported in the paper (e.g., preliminary or failed experiments that603

didn’t make it into the paper).604

9. Code of ethics605

Question: Does the research conducted in the paper conform, in every respect, with the606

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?607

Answer: [Yes]608

Justification: We adhere to the code of ethics.609

Guidelines:610

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.611

• If the authors answer No, they should explain the special circumstances that require a612

deviation from the Code of Ethics.613

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-614

eration due to laws or regulations in their jurisdiction).615

10. Broader impacts616

Question: Does the paper discuss both potential positive societal impacts and negative617

societal impacts of the work performed?618

Answer: [Yes]619

Justification: We have included a broader impacts subsection in our Discussion section.620

Guidelines:621

• The answer NA means that there is no societal impact of the work performed.622
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• If the authors answer NA or No, they should explain why their work has no societal623

impact or why the paper does not address societal impact.624

• Examples of negative societal impacts include potential malicious or unintended uses625
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release of data or models that have a high risk for misuse (e.g., pretrained language models,646

image generators, or scraped datasets)?647

Answer: [Yes]648
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in the Discussion section.650
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safety filters.656

• Datasets that have been scraped from the Internet could pose safety risks. The authors657

should describe how they avoided releasing unsafe images.658

• We recognize that providing effective safeguards is challenging, and many papers do659

not require this, but we encourage authors to take this into account and make a best660

faith effort.661

12. Licenses for existing assets662

Question: Are the creators or original owners of assets (e.g., code, data, models), used in663

the paper, properly credited and are the license and terms of use explicitly mentioned and664

properly respected?665

Answer: [Yes]666

Justification: The authors own all the assets in this paper, and credit with references whenever667

the openly available resources are used for the experiments or datasets.668

Guidelines:669

• The answer NA means that the paper does not use existing assets.670

• The authors should cite the original paper that produced the code package or dataset.671

• The authors should state which version of the asset is used and, if possible, include a672

URL.673

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.674

17



• For scraped data from a particular source (e.g., website), the copyright and terms of675

service of that source should be provided.676

• If assets are released, the license, copyright information, and terms of use in the677

package should be provided. For popular datasets, paperswithcode.com/datasets678

has curated licenses for some datasets. Their licensing guide can help determine the679

license of a dataset.680

• For existing datasets that are re-packaged, both the original license and the license of681

the derived asset (if it has changed) should be provided.682

• If this information is not available online, the authors are encouraged to reach out to683

the asset’s creators.684

13. New assets685

Question: Are new assets introduced in the paper well documented and is the documentation686

provided alongside the assets?687

Answer: [Yes]688

Justification: We document all of the code created for this paper in the comments and689

README files in the Github repository to be shared upon publication.690

Guidelines:691

• The answer NA means that the paper does not release new assets.692

• Researchers should communicate the details of the dataset/code/model as part of their693

submissions via structured templates. This includes details about training, license,694

limitations, etc.695

• The paper should discuss whether and how consent was obtained from people whose696

asset is used.697

• At submission time, remember to anonymize your assets (if applicable). You can either698

create an anonymized URL or include an anonymized zip file.699

14. Crowdsourcing and research with human subjects700

Question: For crowdsourcing experiments and research with human subjects, does the paper701

include the full text of instructions given to participants and screenshots, if applicable, as702

well as details about compensation (if any)?703

Answer: [NA]704

Justification: Our paper doesn’t involve any crowdsourcing for our experiments and does705

not perform new experiments with human subjects.706

Guidelines:707

• The answer NA means that the paper does not involve crowdsourcing nor research with708

human subjects.709

• Including this information in the supplemental material is fine, but if the main contribu-710

tion of the paper involves human subjects, then as much detail as possible should be711

included in the main paper.712

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,713

or other labor should be paid at least the minimum wage in the country of the data714

collector.715

15. Institutional review board (IRB) approvals or equivalent for research with human716

subjects717

Question: Does the paper describe potential risks incurred by study participants, whether718

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)719

approvals (or an equivalent approval/review based on the requirements of your country or720

institution) were obtained?721

Answer: [NA]722

Justification: We use a public dataset that is openly published and available on the internet to723

construct our benchmark and pretrain the models (BrainTreebank, https://braintreebank.dev).724

As such, we did not require any IRB approvals or equivalent to conduct our research.725

Guidelines:726
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• The answer NA means that the paper does not involve crowdsourcing nor research with727

human subjects.728

• Depending on the country in which research is conducted, IRB approval (or equivalent)729

may be required for any human subjects research. If you obtained IRB approval, you730

should clearly state this in the paper.731

• We recognize that the procedures for this may vary significantly between institutions732

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the733

guidelines for their institution.734

• For initial submissions, do not include any information that would break anonymity (if735

applicable), such as the institution conducting the review.736

16. Declaration of LLM usage737

Question: Does the paper describe the usage of LLMs if it is an important, original, or738

non-standard component of the core methods in this research? Note that if the LLM is used739

only for writing, editing, or formatting purposes and does not impact the core methodology,740

scientific rigorousness, or originality of the research, declaration is not required.741

Answer: [NA]742

Justification: We do not use LLMs as core components of our methods. One of our tasks743

is "GPT2 Surprisal", tasking the model with decoding the LLM negative log likelihood of744

the words in the dataset, however this feature was extracted from the sentences following745

standard protocol.746

Guidelines:747

• The answer NA means that the core method development in this research does not748

involve LLMs as any important, original, or non-standard components.749

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)750

for what should or should not be described.751
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A Decoding Tasks and Split Construction752

Decoding Tasks The decoding benchmark used in this paper includes 14 decoding tasks derived753

from multimodal annotations in the BrainTreebank dataset [Wang et al., 2024]. These tasks span754

audio, vision, and language modalities. All tasks are cast as binary classification problems to ensure755

uniformity in evaluation across task types and models.756

• Scalar features (e.g., GPT2 surprisal, pitch, volume): For each session, values are thresh-757

olded such that the top 25% of the distribution are labeled as the positive class, and the758

bottom 25% as the negative class. The middle 50% of values are excluded from training and759

evaluation to reduce ambiguity around class boundaries.760

• Categorical features (e.g., part-of-speech, speaker identity): For each feature, a single761

target class is selected (typically the most frequent), and the task is defined as a one-vs-rest762

binary classification problem.763

All tasks are aligned to word onsets. Neural data is segmented into 1-second windows starting at the764

onset of each word. Unless otherwise stated, all decoding experiments use these 1-second segments765

of neural activity as model inputs, and the corresponding BrainTreebank annotations as binary labels.766

See more information about the decoding tasks in the tables below.767

Subj. Age (yrs.) # Elec-
trodes

Movie Recording
time (hrs)

Used in
benchmark

1
19 154 Thor: Ragnarok 1.83 x

Fantastic Mr. Fox 1.75
The Martian 0.5 x

2

12 162 Venom 2.42 x
Spider-Man: Homecoming 2.42
Guardians of the Galaxy 2.5
Guardians of the Galaxy 2 3 x
Avengers: Infinity War 4.33
Black Panther 1.75
Aquaman 3.42

3
18 134 Cars 2 1.92 x

Lord of the Rings 1 2.67 x
Lord of the Rings 2 (extended
edition)

3.92

4
12 188 Incredibles 1.15

Shrek 3 1.68 x
Megamind 2.43 x

5 6 156 Fantastic Mr. Fox 1.5

6 9 164 Megamind 2.58
Toy Story 1.33
Coraline 1.83

7 11 246 Cars 2 1.75 x
Megamind 1.77 x

8 4.5 162 Sesame Street Episode 1.28

9 16 106 Ant Man 2.28

10 12 216 Cars 2 1.58 x
Spider-Man: Far from Home 2.17 x

Table S1: Subject statistics Subjects in the BrainTreebank dataset, and the trials used in the
benchmark tasks. Table adapted from Wang et al. [2023]. The second column shows the total number
of electrodes. The average amount of recording data per subject is 4.3 (hrs).
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# Feature Description Benchmark Task
1 global_flow

(visual)
A camera motion proxy. The maxi-
mal average dense optical flow vec-
tor magnitude

Same as above

2 local_flow
(visual)

A large displacement proxy. The
maximal optical flow vector magni-
tude

Same as above

3 volume
(auditory)

Average root mean squared watts of
the audio

Binary classification: low (0%-
25%) vs high (75%-100%)

4 pitch
(auditory)

Average pitch of the audio Same as above

5 delta_volume
(auditory)

The difference in average RMS of
the 500ms windows pre- and post-
word onset

Same as above

6 speech
(language)

Whether any speech is present in the
given time interval

Binary classification

7 onset
(language)

Whether a new sentence starts in the
interval, or there is no speech at all

Binary classification

8 gpt2_surprisal
(language)

Negative-log transformed GPT-2
word probability (given preceding
20s of language context)

Binary classification: low (0%-
25%) vs high (75%-100%)

9 word_length
(language)

Word length (ms) Same as above

10 word_gap
(language)

Difference between previous word
offset and current word onset (ms)

Same as above

11 word_index
(language)

The word index in its context sen-
tence

2-way classification: 0 (the first
word in the sentence), or other (1)

12 word_head_pos
(language)

The relative position (left/right) of
the word’s dependency tree head

Binary classification

13 word_part_speech
(language)

The word Universal Part-of-Speech
(UPOS) tag

2-way classification: verb (0), or
other (1)

14 speaker
(multimodal)

The movie character that speaks the
given word.

2-way classification: most fre-
quent speaker (0), or other (1)

Table S2: Extracted visual, auditory, and language features used to create the evaluations. For
all classification tasks, the classes were rebalanced. The difference between local and global flow is
that global is the averaged optical flow, with the average being taken over all optical flow vectors
on the screen, whereas local is the largest individual optical flow vector on the screen. The table is
adapted from Chau et al. [2024].

Train/Test Split Construction To probe model generalization under increasingly challenging768

conditions, we define the following split strategies:769

• Same Subject / Same Movie (SS/SM): Training and testing data are drawn from the same770

subject and same movie (trial of recording). A contiguous 80/20 train-test split is applied,771

ensuring the training block precedes the test block to reduce temporal autocorrelation.772

Performance is computed via 5-fold cross-validation.773

• Same Subject / Different Movie (SS/DM): Data is drawn from the same subject across two774

different movies. For the two movies selected for every subject for evaluation, both ways to775

split the pair into the train and test movie are used, and the resulting AUROC is averaged776

between the two splits.777

BrainBERT-mini decoding experiments were run on the SS/SM split. CNF-1 (Contrastive Neural778

Forecasting) and Functional mapping analyses (i.e., the spatiotemporal decoding maps shown in779

Figure 5) evaluations were run on the SS/DM split.780

We discard the data from electrodes which were labeled as corrupted by the BrainTreebank authors781

[Wang et al., 2024].782
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Figure S1: Fully learned electrode embeddings perform the best in Contrastive Neural Forecast-
ing across both pretraining and evaluation. The two left graphs show the training and test loss
during autoregressive pretraining, respectively. Fully learned embeddings outperform both traditional
positional cosine embeddings with electrode LPI coordinates and the approach where the embeddings
are initialized with the cosine embeddings but then are allowed to be updated during pretraining.
Adding noise to the positional electrode embedding only increases the train and test pretraining
error. The two right plots show the evaluation decoding AUROC (with frozen model weights), and
demonstrate that the evaluation performance also decreases with increased pretraining loss. The error
bars show the mean and s.e.m. across 3 random seeds. This experiment was performed in a model
where the CNF objective was applied at the CLS token.

Functional mapping experiment To estimate the time course of information processing in the783

brain across space in a brain area (Figure 5), we used a sliding window of 125 ms across neural784

activity, in steps of 125 ms from −500ms to +1000ms relative to word onset. For each time bin785

and electrode, a separate linear decoder is trained for each task, either with raw voltage traces786

acting as features, or from the model features. The resulting decoding scores are averaged across787

cross-validation folds. The analysis was run specifically with subject 3, trial 0.788

B Details on the Model and Pretraining789

Pretraining hyperparameters All models were pretrained with learning rate 0.003 which we790

found works best across the range of different model sizes and architectures (which might be a feature791

of the Muon optimizer, for a discussion see Jordan et al. [2024], Large et al. [2024]). We use batch792

size 100, and for every electrode we use batch norm to normalize the input voltage traces across793

the batch and timesamples dimensions. We discard the data from electrodes which were labeled as794

corrupted by the BrainTreebank authors [Wang et al., 2024].795

Learned electrode embeddings We found in our experiments that fully learned electrode embed-796

dings resulted in lower pretraining loss and higher decoding performance compared to the traditional797

approach from prior work [Chau et al., 2024, Zhang et al., 2023] which provides cosine positional798

embeddings from the electrode physical coordinates in 3D space (Supplementary Figure S1).799
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C Comparison to baselines and previous methods800

Linear For this evaluation, raw voltage traces sampled at 2048 Hz were taken from the BrainTree-801

bank data, then line noise was removed at 60± 5 Hz and the 4 harmonics, and the resulting vectors of802

sampled features were fed as input to the linear regression. We found almost identical results when803

removing line noise or passing the data raw to the linear regression.804

Linear (STFT) For this baseline evaluation, the features are the STFT of the raw signal with the805

following parameters (given that the sampling rate is 2048Hz):806

• nperseg=256807

• noverlap=0808

• window=boxcar809

After this step, the data turns into an array of arrays where first dimension is the time bin and the810

second dimension is the STFT result (a complex number); for the downstream regression, all of these811

features are concatenated together, with the real and imaginary parts of the complex features being812

split into two features each.813

Linear (spectrogram) For this baseline evaluation, first the STFT of the raw voltage signal was814

taken as in the Linear (STFT) description, and then the absolute value of each complex number was815

taken to obtain the final real number features for each example.816

BrainBERT For this evaluation, the BrainTreebank data was Laplacian rereferenced (as described817

in the original BrainBERT paper by Wang et al. [2023]), with line noise removed, and then passed into818

the BrainBERT model as provided by Wang et al. [2023]. The output features were concatenated and819

used as input to the linear regression. For the electrodes which could not be Laplacian rereferenced,820

non-rereferenced data was inputted into BrainBERT. The BrainBERT model was frozen and only the821

final linear regression layer was fine tuned, in order to compare the quality of features generated by822

the foundation model.823

For all linear regression, we used the sklearn package, class LinearRegression, with the tolerance824

parameter set as 0.001. In all cases, the features were first normalized using the sklearn StandardScaler.825

We found that it helps with convergence and often produces higher regression values for the baselines.826

Population Transformer For Population Transformer, we followed the implementation and used827

the weights from [Chau et al., 2024]. The fine-tuning protocol is taken to be directly the same as in828

the authors’ original paper (including linear rate, number of epochs, a factor of 10 between learning829

rates of the linear output layer vs the transformer blocks, etc). We found that frozen Population830

Transformer’s performance was almost always at chance and that pretraining through the whole831

model was necessary to achieve comparable performance to other methods.832
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