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Abstract

Understanding the relationship between the various tasks the brain performs can2

shed light on its functional organization. We introduce a benchmark, Neuroprobe,3

which targets a wide range of multimodal tasks. Neuroprobe borrows several4

ideas from modern natural language processing: using large scale naturalsitic5

datasets, probing at scale across tasks as a means to understand black box systems,6

and evaluating on large benchmarks that test many different skills. For artificial7

networks, probe analysis attempts to decode attributes from different layers. It is8

one of the main vehicles used to shed light on the relationship and dependencies9

between tasks and the algorithms that networks learn. While prior neuroscience10

benchmarks tend to focus on a single or a very small number of tasks, Neuroprobe11

uses a fixed set of subjects with a large amount of data across many annotated12

tasks, which will allow us to create an integrated picture. Furthermore, the results13

obtained from Neuroprobe evaluations can yield time-orderings between different14

tasks and recover the functional relationships between tasks that reveal properties15

of the algorithms the brain uses. The main remaining bottleneck to achieving16

these type of results is that decoding performance for many tasks is very poor. We17

demonstrate a few tasks both with simple linear decoders and neural foundation18

models, then introduce a large number of additional attributes that should, in19

principle, be decodable but are not. Neuroprobe gives us an opportunity to build20

higher accuracy decoders, better neural foundation models that are tested across21

many tasks, and to bring neuroscience closer to the methodology that has worked22

so well in natural language understanding, and to ultimately discover the functional23

organization of the brain across many tasks. We make our code publicly available24
2 and will maintain a leaderboard 3 to track model progress upon publication.25

1 Introduction26

The human brain constantly engages in a variety of processing tasks simultaneously: parsing speech,27

interpreting visual scenes, and performing social reasoning (Schurz et al., 2014). However, a cohesive28

picture of how these computations are organized across time and regions in the brain remains poorly29

understood. While modern neuroscience offers glimpses into individual functions, a central challenge30

is that typical experiments isolate one or two tasks at a time, often using simplified stimuli and31

contrived lab settings (Nastase et al., 2020). A solution suggests itself from the field of machine32

learning interpretability, which has developed methods to reverse engineer neural network black33
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Figure 1: Overview of Neuroprobe’s goals. Neuroprobe consists of machine learning classification
tasks derived from intracranial recordings aligned with annotated stimuli. By running a decoding
analysis for each task, we can localize various aspects of multimodal language processing in the
brain. Moreover, we can segment the neural recordings by time, repeat the decoding analyses across
time bins, and discover a time evolution of each task. Previously, neuroscience experiments have
been small, and focused on one task at a time. The results of our analyses can be combined to give a
comprehensive picture of language processing in the brain. From this, two things can be achieved.
First, we can derive neuroscience insights such as the relative timings for processing of certain tasks.
Second, the tasks themselves can be used as a benchmark of neural decoding models.

boxes via probing experiments, e.g. Tenney et al. (2019); Alain & Bengio (2016). These methods are34

powerful, but there is an obstacle in applying them to study the brain: decoding the contents of brain35

activity remains a challenging task (Paninski & Cunningham, 2018). While intracranial data offers36

high temporal and spatial resolution, the raw signals are noisy and high-dimensional. To these ends,37

we introduce Neuroprobe, a benchmark that is designed both to be a setting in which neuroscience38

probing experiment may be run and as a measure of progress to spur improvement of neural decoding39

models.40

Neuroprobe contains 19 decoding tasks that span vision and language, all on the same subjects41

and the same neural recordings collected while subjects watched movies. Having many different42

tasks on the same dataset allows one to derive constraints on the relationships between tasks, such43

as: What is the temporal order between tasks across many subjects? Which tasks share neural real44

estate? How does latency in one task influence latency in another task? These constraints can then45

narrow the space of algorithms to regularize models of brain function. Unfortunately, as mentioned,46

decoding today for many tasks is nowhere near accurate enough to systematically derive these kinds47

of constraints. So, we develop a public leaderboard for hosting submissions to the Neuroprobe48

benchmark. As submissions to the leaderboard increase, decoding accuracy will increase, in turn49

raising our confidence in the spatial and temporal distribution of different tasks uncovered by the50

probing experiments.51

Meanwhile, on the modeling front, more and more foundation models are being developed for52

neural recordings. There has been an explosion of neural foundation models as of late, including:53

Neuroformer (Antoniades et al., 2024), BrainBERT (Wang et al., 2023), PopT (Chau et al., 2024),54

STNDT (Le & Shlizerman, 2022), NDT2 (Ye et al., 2023), MBrain (Cai et al., 2023), Brant (Zhang55

et al., 2023), MtM (Zhang et al., 2024b), and POYO (Azabou et al., 2023). Most of these models56

are not tested on standardized decoding tasks. There are few cross-task decoding datasets at present57

for testing new neural foundation models. This runs contrary to one of the main selling points of58

foundation models for neuroscience, which is that they will improve decoding accuracy to enable59

neuroscientists to run more experiments on a variety of tasks with less data. In addition, in a sense60

the space of tasks determines the space of models considered, since only models that can show an61

advantage are selected for and published. It is a long term problem for the community that larger62

batteries of decoding tasks are not a common evaluation practice. This is already reflected in our63

findings that state of the foundation models for neural recordings don’t make a massive different in64

decoding performance for some tasks, and can even hurt it in a few cases (see section 4).65

We have designed Neuroprobe to be usable by members of the ML community even if they have66

no particular knowledge of neuroscience. Anyone can easily run models and contribute new ideas.67
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Figure 2: From raw data to decoding tasks. As part of the BrainTreebank dataset, 26 movies (a)
are watched by 10 patients with stereoelectroencephalography electrodes implanted in various brain
regions (b), and the local field potential from the implanted electrodes is recorded (c). Neuroprobe
turns this dataset into an evaluation benchmark by segmenting the aligned data into various audio,
language, and vision decoding tasks, such as, loudness and pitch of the audio, average pixel brightness,
etc.

While Neuroprobe provides the analysis tools to interpret better decoding results. Lowering the68

barriers to entry ensures that we have a healthier community and attracts many more researchers to69

these problems.70

Neuroprobe, see Figure 2, is derived from the Brain Treebank (Wang et al., 2024), which consists of71

intracranial neural recordings aligned with the corresponding movie stimuli. The dataset contains72

annotations from which we derive 19 decoding tasks, see Supplementary Table 1. We select the73

BrainTreebank because it is at the scale at which modern NLP begins to operate and models being to74

be understood (43 hours of recordings): comparable to datasets on low-resource languages.75

In addition, we standardize a number of aspects of the benchmark. We select test/train splits in76

different conditions: all the way from training and testing on the same subject and movie, to doing77

cross-subject cross-movie decoding. We host a centralized website that aggregates results, both as a78

whole and also by split-type and task, using a JSON schema to validate submissions.79

Our contributions are:80

1. A new large-scale multitask decoding benchmark: Neuroprobe.81

2. Standardized splits and methods to rank neural foundation models and encourage their82

development in a direction which benefits decoding tasks.83

3. Results from a set of baselines and state-of-the-art models on Neuroprobe.84

4. An early analysis of the timings and spatial distribution of different task processing pathways85

in the brain.86

In the long run we hope that Neuroprobe will both lead the way to an understanding of the general87

architecture of the computations that the brain performs as well as bring the ML and neuroscience88

communities into closer alignment by translating interesting neuroscience questions into questions89

that are easily digested and then improved on by the ML community.90

2 Related work91

While there are many publicly available neural recordings that neural decoding models have been92

developed on, neuroscience still suffers from a dearth of standardized, easy-to-run machine learning93

benchmarks. This lack of defined decoding tasks, standardized train/test splits, and metrics make it94

difficult to compare models.95

Neural recording datasets The most recently developed models for neural data have relied on96

several widely accessible datasets. For non-invasive EEG decoding, datasets from Zheng & Lu97

(2015); Grootswagers et al. (2022); Bhattasali et al. (2020); Tangermann et al. (2012); Obeid &98

Picone (2016); Broderick et al. (2018); Brennan & Hale (2019) have been used in the construction of99
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Figure 3: Neuroprobe splits. We perform analyses on three different types of splits. In same
subject/same movie (SS-SM) we train on data from one subject and one movie segment, and evaluate
on the same subject, but another segment of the same movie. Performance is measured via cross-
validation. In same subject/different movie (SS-DM), we train on data from one subject and from one
movie. Then, we evaluate on another movie. In different subject/different movie (DS-DM), we train
on data from one subject and one movie and evaluate on data from an entirely different subject and
movie. This is the most challenging split.

models such as those proposed by Jiang et al. (2024); Yang et al. (2023); Yuan et al. (2024); Défossez100

et al. (2023). For fMRI decoding, (Wehbe et al., 2014; LeBel et al., 2023; Nastase et al., 2021; Li101

et al., 2022; Allen et al., 2022) have led to models such as those proposed by Scotti et al. (2024);102

Ozcelik & VanRullen (2023). For MEG decoding, Jan-Mathijs et al. (2019); Hebart et al. (2023)103

have lead to models such as those proposed by Défossez et al. (2023); Benchetrit et al.. For neural104

spike decoding Perich et al. (2025); Churchland et al. (2024); Manley et al. (2024); IBL (2024) have105

lead to models such as those proposed by Azabou et al. (2023); Zhang et al. (2024a). For broadband106

intracranial neural activity, datasets from (Peterson et al., 2022; Wang et al., 2024; Nejedly et al.,107

2020) have fueled the development of models proposed by (Peterson et al., 2021; Wang et al., 2023;108

Chau et al., 2024) However, these datasets do not provide rigorous splits or testing guidelines, so109

each model is difficult to compare to others.110

Existing neural data benchmarks There are a few benchmarks involving neural data. Some of the111

earliest involve EEG BCI decoding (Tangermann et al., 2012), but are limited in data quality and scale112

by today’s standards. The NaturalScenesDataset (Allen et al., 2022) is close to being a benchmark in113

that they have splits, but it primarily benchmarks fMRI data, and focuses on visual processing. The114

clinical-grade Temple University Hospital EEG dataset (Obeid & Picone, 2016) can also be used as a115

benchmark, but it only contains EEG and has the labels are limited to seizure detection. Benchmarks116

for neural spikes are proposed by Pei et al. (2021); Karpowicz et al. (2024); Willett et al. (2023);117

Lueckmann et al. (2025), but these only contain spiking information rather than broadband signals118

from ECoG or sEEG that capture more neural activity (Parvizi & Kastner, 2018). A benchmark like119

Neuroprobe for high fidelity intracranial signals with corresponding challenging naturalistic language120

stimuli is still needed to allow the field to progress forward in building better neural decoding models.121

3 Approach122

Brain Treebank Neuroprobe is an evaluation-only benchmark environment that uses the raw data123

from the BrainTreebank (Wang et al., 2024), a publicly available dataset released under a CC124
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Figure 4: Neuroprobe enables tracking of information processing in the brain across tasks.
A linear model is fit for a sliding 125ms window of activity. Here, we show the performance of
the most decodable 100 electrodes per each task. Error bars show standard error across electrodes.
Performance is plotted on a log scale to show trends for tasks that have lower decodability. The x-axis
shows time, where t = 0 corresponds with word onset. By plotting decoding performance across
time, the time course of information availability for each task becomes visible. Audio-linguistic tasks,
such as Speech vs. Non-speech, are most decodable closest to word onset.

Figure 5: Time-ranking of decodability A simple method of finding relationships between tasks
it look at when each task is decodable. Consistencies in this order across subjects are an indication
of a dependency between tasks. A shortcut to that, is to further restrict ourselves to when each task
achieves maximum decodability. Note that we use a window of 125 ms which gives fairly coarse
temporal localizations, which is why many tasks overlap. We can already observe some patterns from
these results, even with poor decoding accuracy. Notably, Word head position, a semantic feature that
pertains to the position of the dependency parse head, is decoded later than other language features.
A caveat should be offered that these timings are dependent on the type of decoding analysis being
performed. As different decoding methods are developed which solidify our ability to decode each
task, it is certain that these ordering will change.

BY 4.0 license. The Brain Treebank is a large-scale dataset of intracranial electrophysiological125

recordings (stereoelectroencephalography; sEEG) collected while 10 human subjects (5 male, 5126

female, ages 4–19; Supplementary Table 3) watched 26 total Hollywood movies (Supplementary127

Table 4). Electrode placements for each subject and their speech-selective responses are shown in128

Supplementary Figure 10. Spanning 43 hours of neural activity, the dataset aligns recorded brain129

signals with transcribed and manually corrected speech, word onsets, and universal dependency130

parses across the 223,068 words in 38,572 sentences. This dataset enables the systematic evaluation131

of computational models on multimodal neural decoding tasks.132

Decoding tasks We use the movie annotations and the alignment with the corresponding neural data133

to create a suite of 19 decoding tasks, spanning visual, audio, and language domains. For every task,134

the neural data is the input and the annotation label is the target output, where we formalize all of the135
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tasks as binary classification by thresholding the labels. For example, for the GPT2 Surprisal task,136

the positive label corresponds to surprisal annotations above the 75%th percentile of the distribution137

within a session, and the negative label to the values below the 25%th percentile. For non-scalar labels138

(such as speaker identity or part of speech of the word) we pick a main target class (i.e. most frequent139

speaker, or Verb for the part of speech task), and formulate the task as one-versus-rest classification.140

See more details in Appendix A.141

Splits The Neuroprobe evaluation takes place across three different types of splits. For the same142

subject/same movie (SS-SM) splits, train data and test data come from a single movie-viewing session.143

Decoding results are cross-validated with an 80-20 train-test split. Importantly, the indices for the144

cross-validation splits are not drawn from the whole movie uniformly, but rather the train examples145

are taken from a single contiguous block and the validation examples are taken from a separate block.146

This is done to prevent models from over-fitting to auto-correlation in the signal.147

For the same subject-different movie SS-DM split, the train data consists of examples drawn from the148

longest movie viewed by a given patient, and the test data comes from the second longest movie.149

For the different subject-different movie DS-DM split, the train data consists of data from a single150

session (trial 4), viewed by subject 2, chosen because this is the longest trial and the subject with151

the most electrodes in both hemispheres. Testing then consists of the average performance across152

selected sessions for all other subjects (see Appendix F). This split in particular presents a demanding153

test of model generalizability, especially since electrode placements vary widely between patients154

(see Figure 10).155

Experiments In Neuroprobe, experiments can either be performed at the single-electrode level or156

the population level, i.e., using all electrodes in a given subject as model input. To give a sense of157

the types of neuroscience insights that can be derived from Neuroprobe, we perform a collection of158

single-electrode analyses across the SS-SM splits for all BrainTreebank sessions. In particular, for159

each task, we fit a linear classifier to do decoding over a fixed window of activity (250 ms). This160

window slides along a longer period, from 0.5s before word onset to 1.25s after word onset, with a161

stride of 125ms. This provides a picture of the time-course of decodability in the brain. Electrodes162

marked as corrupted in the original BrainTreebank dataset are excluded. See Section 4.163

Neuroprobe-Lite Benchmark Outside of analyses described above, for the purposes of comparing164

models, running experiments over all sessions and electrodes is prohibitively expensive. To this end,165

we subset the data to create Neuroprobe-lite by selecting a smaller portion of subjects and sessions (6166

subjects, 2 trials each) for training and evaluation.167

Furthermore, the total number of electrodes per subject is capped at 120. The electrodes in168

Neuroprobe-lite were chosen specifically to cover as much of the brain in each participant as possible.169

This was done by randomly taking a specified proportion of electrodes from every probe, to ensure170

that every probe is represented in the Neuroprobe-lite data features. This ensures that the input for171

each task is standardized matrix which has predictable memory and computational requirements. We172

maintain a public leaderboard which will display model performance on this benchmark, both on the173

single-electrode and population level; see Supplemental fig. 12.174

Models To show the utility of the Neuroprobe tasks as a benchmark, we evaluate on a few baselines175

and models. For the purposes of benchmarking, all models are run on Neuroprobe-lite (see above).176

All inputs are given as a population, i.e., the data from all electrodes is provided as input, concatenated.177

The models we benchmark span the range of simple classifiers to large, pretrained models. These178

include three linear regression models, which take as input either the raw voltage time-series inputs,179

Fourier transform input, or Short-time Fourier transform (STFT) inputs. For pretrained models, we180

also train a regression on BrainBERT (Wang et al., 2023) inputs, and fine-tune a linear layer on181

top of a pretrained PopT (Chau et al., 2024), a pretrained transformer for encoding arbitrary sets of182

electrodes. More details on the models available in Appendix H.183

Metric calculations The primary evaluation metric was the Area Under the Receiver Operating184

Characteristic curve (AUROC), aggregated across electrodes. We adjusted the aggregation strategy to185

be compatible with each model to obtain the different subjects-different movie DS/DM results shown186

in Figure 3. Before running our linear regressions, we preprocessed the neural data to represent187

activity in each cortical region (using averaging per subject/trial pair), as defined from the 34 regions188

by the Desikan-Killiany atlas. Similarly, we ran BrainBERT, with the same region averaging strategy.189
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Figure 6: Distribution of task processing throughout the brain A linear decoder is trained on the
single-subject/single-movie split. Color shows ROC-AUC on a logarithmic scale. Performance is
computed by averaging over cross-validation folds (k = 5) and movies and then taking a max over
time bins. Language features like Sentence Onset and GPT-2 Surprisal are most decodable in the
temporal and frontal lobes.

Figure 7: Time evolution of surprisal decodability throughout the brain. The decodability of
features vary in both time and space. Close to word onset (t = 0), surprisal is most decodable in
the superior temporal gyrus. Time zero here refers to the onset of a given word. Most words are
interior to sentences or to conversations. Since most modern surprisal metrics are contextualized, one
can immediately predict surpiral even from the neural activity left over from prior words As time
progresses, surprisal becomes more decodable in the frontal areas. Full progressions for all tasks can
be seen in Appendix L and in a movie at this url: https://neuroprobe.dev/neuroprobe_time_
course.mp4.

For the PopulationTransformer we use all electrodes that can be bipolar-rereferenced and are in the190

set of ‘clean’ electrodes (see (Chau et al., 2024)) for evaluation. No accomodation for the DS/DM191

split was necessary for the PopulationTransformer, which is designed to handle subject-transfer.192

4 Results193

Timing analysis To investigate the time course of linguistic information processing in the brain, we194

aligned neural data to word onsets and split it into narrow time-bins (width = 125ms), and train195

a separate linear decoder on each bin for multiple tasks. Decodability is computed as the average196

across cross-validation folds (k = 5). For each task, we restrict our attention to the top 100 electrodes197

with the highest decodability. Decoding performance as a function of time shows the course of198

processing after the word onset (t = 0, Figure 4). Interestingly, the beginning of a new sentence can199

be decoded with better-than-chance AUROC even before the word onset (µ = 0.53, σM = 0.0015 at200

−250ms), hinting at the predictive nature of processing. Moreover, we can find a time-ranking of201

features by looking at when decodability peaks for reach feature (Figure 5). For example, we note202

that the high-level semantic feature ‘word head position’ is decodable only later (decodability peaks203

at t = 0.5s vs. volume and pitch at t = 0.125s).204

Spatial analysis By examining the linear decodability of features, a picture emerges of which features205

modulate activity in which areas of the brain (Figure 6). Using the single electrode analysis, we find206

that audio-linguistic tasks such as ‘sentence onset’, ‘speech vs. non-speech’, ‘delta volume’ are most207

decodable in the superior temporal gyrus, especially close to Herschel’s and Wernicke’s area, with208
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Figure 8: Performance of baseline models on the 19 tasks of Neuroprobe. Evaluation is done on
the same subject, same trial (SS-ST), using 5-fold cross-validation. Normalized audio volume traces
and the distribution of detected faces with corresponding word counts are shown in Supplementary
Figures 9 and 11, respectively. The performance of four models is shown: (1) logistic regression
either from raw voltage signal of all electrodes to the labels, or (2) from the spectrogram of the
signal to the labels, as well as (3) BrainBERT (Wang et al., 2023) and (4) PopulationTransformer
(Chau et al., 2024). Neural data was cut to include one second following each word onset. In case of
multi-class classification, AUROC was computed using a one-vs-all strategy and averaged together.
Performance on different trials for the same subject were averaged together. Error bars denote s.e.m.
across all subjects. These results can be seen in tabular form in Appendix I.

average AUROCs of 0.61, 0.55, and 0.62, respectively in the gyrus of the temporal transverse. Here209

region results are given with respect to the Destrieux atlas; see Appendix M.210

Spatio-Temporal analysis We do a deep dive on the surprisal feature and show that after word onset,211

it is most decodable in the temporal lobe (AUROC = 0.58 at t = 0 in the transverse temporal),212

but decodability spreads to the frontal lobe as time progresses (AUROC = 0.50 at t = −0.125213

and AUROC = 0.52 at t = 0.5); see Figure 7. A movie of this for all tasks can be seen at214

https://neuroprobe.dev/neuroprobe_time_course.mp4.215

Comparison of basic decoding methods on Neuroprobe. We compare the performance of two216

simple baseline models—logistic regression applied to raw voltage signals and logistic regression217

applied to spectrogram features—across the 19 decoding tasks in Neuroprobe. Performance is218

evaluated using area under the receiver operating characteristic curve (AUROC), with chance-level219

performance (ROC = 0.5) included for reference. We also compare with BrainBERT and PopT using220

their publicly released off-the shelf-weights. Because of this there may be some discrepancy due to the221

fact that both models were trained on 5s intervals, whereas we train on 1s intervals across all models222

for consistency. In general, linear decoding is very good (see Figure 3), achieving the best overall223

performance on the SS/SM (0.590 ± 0.003) split, with the second best model being BrainBERT224

(0.575 ± 0.003). On the SS/DM split, the linear baseline tied BrainBERT (0.562 ± 0.002 vs225
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0.562±0.003, respectively), outperforming PopulationTransformer (0.545±0.003). But BrainBERT226

performs the best on the difficult DS/DM split (0.518± 0.001) with the next best model being the227

linear baseline (0.511± 0.002).228

Finally, for SS-SM, a breakdown by task can be seen in Figure 8. The PopulationTransformer, despite229

being pretrained, underperforms on many tasks, but achieves the highest performance on the Sentence230

Onset and Speech vs. Non-speech tasks.231

5 Conclusion232

Neuroprobe can be used in several ways by different communities: (1) Machine learning practitioners233

can contribute by improving decoding performance. (2) At the intersection of ML and neuroscience,234

Neuroprobe can be used to assess how good a given neural foundation model is at improving decoding235

accuracy. (3) Neuroscientists can use Neuroprobe to uncover relationships between different tasks236

that the brain executes which puts constraints on the kinds of algorithms our brains are using.237

Using Neuroprobe, questions about processing in the brain become machine learning decoding tasks238

which can be rapidly iterated on. This will drive improvements both in decoding ability and the ability239

to draw neuroscience conclusions from large scale data. As we have seen in other fields, this can also240

lead to a virtuous cycle in which neuroscientists are encouraged to share more datasets to the effort.241

Despite the weakness of current decoding models, Neuroprobe can still find interesting trends in both242

the spatial and temporal organization of tasks in the brain. As decoding models improve, the clarity243

of such findings will improve and their variance will decline. Each decoding task induces a map244

across the brain of when and where processing specific to that task is performed. By overlaying many245

of these maps, a functional picture of the brain emerges of which language, vision, and audio features246

modulate activity in each region. We see this approach as a way of answering the long-standing247

neuroscience question: What is the underlying circuit basis of language processing in the brain?248

Limitations Our decoding results from the baselines we tested are low for a few tasks, such as249

speaker identity and pitch, and thus drawing any conclusions from their results is fraught. While250

our data offers unprecedented combination of scale and resolution, it is collected from a clinical251

population undergoing invasive monitoring, and results should not be overgeneralized. We only have252

10 subjects currently. This is because it is difficult to obtain this kind of data, which requires invasive253

surgery to implant electrodes. However, each subject has many sessions.254

Broader impacts Neuroprobe provides a standardized benchmark for evaluating models of human255

brain activity, with potential applications in neuroscience, machine learning, and clinical technolo-256

gies such as brain-computer interfaces. By releasing our data, code, and leaderboard, we aim to257

democratize access to high-quality neural benchmarks and foster cross-disciplinary collaboration.258

Future work Our framework is general enough to accommodate future annotations, allowing for259

investigations of low-level language processing, such as part of speech, or high-level semantic260

processing such as thematic roles or language model embeddings. We also seek, in near-term future261

work, to add to the library of tasks and datasets in Neuroprobe. As we continue to build out the262

benchmark, researchers will be able to study the question of how various tasks interact with each263

other.264
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Question: Do the main claims made in the abstract and introduction accurately reflect the436

paper’s contributions and scope?437

Answer: [Yes]438

Justification: Yes, we outline the types insights that can be derived from our benchmark and439

then show preliminary neuroscience results that take steps to producing those insights in440

Section 4.441

Guidelines:442

• The answer NA means that the abstract and introduction do not include the claims443

made in the paper.444

• The abstract and/or introduction should clearly state the claims made, including the445

contributions made in the paper and important assumptions and limitations. A No or446

NA answer to this question will not be perceived well by the reviewers.447

• The claims made should match theoretical and experimental results, and reflect how448

much the results can be expected to generalize to other settings.449

• It is fine to include aspirational goals as motivation as long as it is clear that these goals450

are not attained by the paper.451

2. Limitations452

Question: Does the paper discuss the limitations of the work performed by the authors?453

Answer: [Yes]454

Justification: Yes, we discuss this in the conclusion.455

Guidelines:456

• The answer NA means that the paper has no limitation while the answer No means that457

the paper has limitations, but those are not discussed in the paper.458

• The authors are encouraged to create a separate "Limitations" section in their paper.459

• The paper should point out any strong assumptions and how robust the results are to460

violations of these assumptions (e.g., independence assumptions, noiseless settings,461

model well-specification, asymptotic approximations only holding locally). The authors462

should reflect on how these assumptions might be violated in practice and what the463

implications would be.464

• The authors should reflect on the scope of the claims made, e.g., if the approach was465

only tested on a few datasets or with a few runs. In general, empirical results often466
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• The authors should reflect on the factors that influence the performance of the approach.468
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is low or images are taken in low lighting. Or a speech-to-text system might not be470
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• The authors should discuss the computational efficiency of the proposed algorithms473

and how they scale with dataset size.474

• If applicable, the authors should discuss possible limitations of their approach to475

address problems of privacy and fairness.476

• While the authors might fear that complete honesty about limitations might be used by477

reviewers as grounds for rejection, a worse outcome might be that reviewers discover478
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judgment and recognize that individual actions in favor of transparency play an impor-480

tant role in developing norms that preserve the integrity of the community. Reviewers481

will be specifically instructed to not penalize honesty concerning limitations.482

3. Theory assumptions and proofs483

Question: For each theoretical result, does the paper provide the full set of assumptions and484

a complete (and correct) proof?485
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Answer: [NA]486

Justification: We present a benchmark that only pertains to empirical results.487

Guidelines:488

• The answer NA means that the paper does not include theoretical results.489

• All the theorems, formulas, and proofs in the paper should be numbered and cross-490

referenced.491

• All assumptions should be clearly stated or referenced in the statement of any theorems.492

• The proofs can either appear in the main paper or the supplemental material, but if493

they appear in the supplemental material, the authors are encouraged to provide a short494

proof sketch to provide intuition.495

• Inversely, any informal proof provided in the core of the paper should be complemented496

by formal proofs provided in appendix or supplemental material.497

• Theorems and Lemmas that the proof relies upon should be properly referenced.498

4. Experimental result reproducibility499

Question: Does the paper fully disclose all the information needed to reproduce the main ex-500

perimental results of the paper to the extent that it affects the main claims and/or conclusions501

of the paper (regardless of whether the code and data are provided or not)?502

Answer: [Yes]503

Justification: We release the code on github with a quickstart notebook as well as the scripts504

that produce all results and figures. The appendix contains specification of trials used in505

splits (see Appendix F).506

Guidelines:507

• The answer NA means that the paper does not include experiments.508

• If the paper includes experiments, a No answer to this question will not be perceived509

well by the reviewers: Making the paper reproducible is important, regardless of510

whether the code and data are provided or not.511

• If the contribution is a dataset and/or model, the authors should describe the steps taken512

to make their results reproducible or verifiable.513

• Depending on the contribution, reproducibility can be accomplished in various ways.514

For example, if the contribution is a novel architecture, describing the architecture fully515

might suffice, or if the contribution is a specific model and empirical evaluation, it may516

be necessary to either make it possible for others to replicate the model with the same517

dataset, or provide access to the model. In general. releasing code and data is often518

one good way to accomplish this, but reproducibility can also be provided via detailed519

instructions for how to replicate the results, access to a hosted model (e.g., in the case520

of a large language model), releasing of a model checkpoint, or other means that are521

appropriate to the research performed.522

• While NeurIPS does not require releasing code, the conference does require all submis-523

sions to provide some reasonable avenue for reproducibility, which may depend on the524

nature of the contribution. For example525

(a) If the contribution is primarily a new algorithm, the paper should make it clear how526

to reproduce that algorithm.527

(b) If the contribution is primarily a new model architecture, the paper should describe528

the architecture clearly and fully.529

(c) If the contribution is a new model (e.g., a large language model), then there should530

either be a way to access this model for reproducing the results or a way to reproduce531

the model (e.g., with an open-source dataset or instructions for how to construct532

the dataset).533

(d) We recognize that reproducibility may be tricky in some cases, in which case534

authors are welcome to describe the particular way they provide for reproducibility.535

In the case of closed-source models, it may be that access to the model is limited in536

some way (e.g., to registered users), but it should be possible for other researchers537

to have some path to reproducing or verifying the results.538

5. Open access to data and code539
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Question: Does the paper provide open access to the data and code, with sufficient instruc-540

tions to faithfully reproduce the main experimental results, as described in supplemental541

material?542

Answer: [Yes]543

Justification: Same as above. See item 4. We release our code on github and include a544

quickstart jupyter notebook as well as scripts to obtain our results.545

Guidelines:546

• The answer NA means that paper does not include experiments requiring code.547

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/548

public/guides/CodeSubmissionPolicy) for more details.549

• While we encourage the release of code and data, we understand that this might not be550

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not551

including code, unless this is central to the contribution (e.g., for a new open-source552

benchmark).553

• The instructions should contain the exact command and environment needed to run to554

reproduce the results. See the NeurIPS code and data submission guidelines (https:555

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.556

• The authors should provide instructions on data access and preparation, including how557

to access the raw data, preprocessed data, intermediate data, and generated data, etc.558

• The authors should provide scripts to reproduce all experimental results for the new559

proposed method and baselines. If only a subset of experiments are reproducible, they560

should state which ones are omitted from the script and why.561

• At submission time, to preserve anonymity, the authors should release anonymized562

versions (if applicable).563

• Providing as much information as possible in supplemental material (appended to the564

paper) is recommended, but including URLs to data and code is permitted.565

6. Experimental setting/details566

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-567

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the568

results?569

Answer: [Yes]570

Justification: Hyperparameters are given in Appendix H and splits are specified in Ap-571

pendix F572

Guidelines:573

• The answer NA means that the paper does not include experiments.574

• The experimental setting should be presented in the core of the paper to a level of detail575

that is necessary to appreciate the results and make sense of them.576

• The full details can be provided either with the code, in appendix, or as supplemental577

material.578

7. Experiment statistical significance579

Question: Does the paper report error bars suitably and correctly defined or other appropriate580

information about the statistical significance of the experiments?581

Answer: [Yes]582

For our empirical results, we report standard error across cross-val folds.583

Guidelines:584

• The answer NA means that the paper does not include experiments.585

• The authors should answer "Yes" if the results are accompanied by error bars, confi-586

dence intervals, or statistical significance tests, at least for the experiments that support587

the main claims of the paper.588

• The factors of variability that the error bars are capturing should be clearly stated (for589

example, train/test split, initialization, random drawing of some parameter, or overall590

run with given experimental conditions).591
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• The method for calculating the error bars should be explained (closed form formula,592

call to a library function, bootstrap, etc.)593

• The assumptions made should be given (e.g., Normally distributed errors).594

• It should be clear whether the error bar is the standard deviation or the standard error595

of the mean.596

• It is OK to report 1-sigma error bars, but one should state it. The authors should597

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis598

of Normality of errors is not verified.599

• For asymmetric distributions, the authors should be careful not to show in tables or600

figures symmetric error bars that would yield results that are out of range (e.g. negative601

error rates).602

• If error bars are reported in tables or plots, The authors should explain in the text how603

they were calculated and reference the corresponding figures or tables in the text.604

8. Experiments compute resources605

Question: For each experiment, does the paper provide sufficient information on the com-606

puter resources (type of compute workers, memory, time of execution) needed to reproduce607

the experiments?608

Answer: [Yes]609

We discuss this in Appendix J.610

Guidelines:611

• The answer NA means that the paper does not include experiments.612

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,613

or cloud provider, including relevant memory and storage.614

• The paper should provide the amount of compute required for each of the individual615

experimental runs as well as estimate the total compute.616

• The paper should disclose whether the full research project required more compute617

than the experiments reported in the paper (e.g., preliminary or failed experiments that618

didn’t make it into the paper).619

9. Code of ethics620

Question: Does the research conducted in the paper conform, in every respect, with the621

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?622

Answer: [Yes]623

We adhere to the code of ethics.624

Guidelines:625

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.626

• If the authors answer No, they should explain the special circumstances that require a627

deviation from the Code of Ethics.628

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-629

eration due to laws or regulations in their jurisdiction).630

10. Broader impacts631

Question: Does the paper discuss both potential positive societal impacts and negative632

societal impacts of the work performed?633

Answer: [Yes]634

We discuss this in the Conclusion.635

Guidelines:636

• The answer NA means that there is no societal impact of the work performed.637

• If the authors answer NA or No, they should explain why their work has no societal638

impact or why the paper does not address societal impact.639

• Examples of negative societal impacts include potential malicious or unintended uses640

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations641

(e.g., deployment of technologies that could make decisions that unfairly impact specific642

groups), privacy considerations, and security considerations.643
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• The conference expects that many papers will be foundational research and not tied644

to particular applications, let alone deployments. However, if there is a direct path to645

any negative applications, the authors should point it out. For example, it is legitimate646

to point out that an improvement in the quality of generative models could be used to647

generate deepfakes for disinformation. On the other hand, it is not needed to point out648

that a generic algorithm for optimizing neural networks could enable people to train649

models that generate Deepfakes faster.650

• The authors should consider possible harms that could arise when the technology is651

being used as intended and functioning correctly, harms that could arise when the652

technology is being used as intended but gives incorrect results, and harms following653

from (intentional or unintentional) misuse of the technology.654

• If there are negative societal impacts, the authors could also discuss possible mitigation655

strategies (e.g., gated release of models, providing defenses in addition to attacks,656

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from657

feedback over time, improving the efficiency and accessibility of ML).658

11. Safeguards659

Question: Does the paper describe safeguards that have been put in place for responsible660

release of data or models that have a high risk for misuse (e.g., pretrained language models,661

image generators, or scraped datasets)?662

Answer: [NA]663

Justification: We’re using a public dataset only for evaluation purposes.664

Guidelines:665

• The answer NA means that the paper poses no such risks.666

• Released models that have a high risk for misuse or dual-use should be released with667

necessary safeguards to allow for controlled use of the model, for example by requiring668

that users adhere to usage guidelines or restrictions to access the model or implementing669

safety filters.670

• Datasets that have been scraped from the Internet could pose safety risks. The authors671

should describe how they avoided releasing unsafe images.672

• We recognize that providing effective safeguards is challenging, and many papers do673

not require this, but we encourage authors to take this into account and make a best674

faith effort.675

12. Licenses for existing assets676

Question: Are the creators or original owners of assets (e.g., code, data, models), used in677

the paper, properly credited and are the license and terms of use explicitly mentioned and678

properly respected?679

Answer: [Yes]680

Justification: In the approach section we specify BrainTreebank’s license.681

Guidelines:682

• The answer NA means that the paper does not use existing assets.683

• The authors should cite the original paper that produced the code package or dataset.684

• The authors should state which version of the asset is used and, if possible, include a685

URL.686

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.687

• For scraped data from a particular source (e.g., website), the copyright and terms of688

service of that source should be provided.689

• If assets are released, the license, copyright information, and terms of use in the690

package should be provided. For popular datasets, paperswithcode.com/datasets691

has curated licenses for some datasets. Their licensing guide can help determine the692

license of a dataset.693

• For existing datasets that are re-packaged, both the original license and the license of694

the derived asset (if it has changed) should be provided.695
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• If this information is not available online, the authors are encouraged to reach out to696

the asset’s creators.697

13. New assets698

Question: Are new assets introduced in the paper well documented and is the documentation699

provided alongside the assets?700

Answer: [Yes]701

Justification: We are an evaluation-only benchmark. We make the code necessary for our702

benchmark public.703

Guidelines:704

• The answer NA means that the paper does not release new assets.705

• Researchers should communicate the details of the dataset/code/model as part of their706

submissions via structured templates. This includes details about training, license,707

limitations, etc.708

• The paper should discuss whether and how consent was obtained from people whose709

asset is used.710

• At submission time, remember to anonymize your assets (if applicable). You can either711

create an anonymized URL or include an anonymized zip file.712

14. Crowdsourcing and research with human subjects713

Question: For crowdsourcing experiments and research with human subjects, does the paper714

include the full text of instructions given to participants and screenshots, if applicable, as715

well as details about compensation (if any)?716

Answer: [NA]717

Justification: We use a previously existing public dataset.718

Guidelines:719

• The answer NA means that the paper does not involve crowdsourcing nor research with720

human subjects.721

• Including this information in the supplemental material is fine, but if the main contribu-722

tion of the paper involves human subjects, then as much detail as possible should be723

included in the main paper.724

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,725

or other labor should be paid at least the minimum wage in the country of the data726

collector.727

15. Institutional review board (IRB) approvals or equivalent for research with human728

subjects729

Question: Does the paper describe potential risks incurred by study participants, whether730

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)731

approvals (or an equivalent approval/review based on the requirements of your country or732

institution) were obtained?733

Answer: [NA]734

Justification: We use a public dataset that is openly published and available on the internet735

to construct our benchmark (BrainTreebank, https://braintreebank.dev). As such, we did not736

require any IRB approvals or equivalent to conduct our research.737

Guidelines:738

• The answer NA means that the paper does not involve crowdsourcing nor research with739

human subjects.740

• Depending on the country in which research is conducted, IRB approval (or equivalent)741

may be required for any human subjects research. If you obtained IRB approval, you742

should clearly state this in the paper.743

• We recognize that the procedures for this may vary significantly between institutions744

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the745

guidelines for their institution.746
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• For initial submissions, do not include any information that would break anonymity (if747

applicable), such as the institution conducting the review.748

16. Declaration of LLM usage749

Question: Does the paper describe the usage of LLMs if it is an important, original, or750

non-standard component of the core methods in this research? Note that if the LLM is used751

only for writing, editing, or formatting purposes and does not impact the core methodology,752

scientific rigorousness, or originality of the research, declaration is not required.753

Answer: [NA]754

Justification: We do not use LLMs as core components of our methods. One of our tasks755

is "GPT2 Surprisal", tasking the model with decoding the LLM negative log likelihood of756

the words in the dataset, however this feature was extracted from the sentences following757

standard protocol.758

Guidelines:759

• The answer NA means that the core method development in this research does not760

involve LLMs as any important, original, or non-standard components.761

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)762

for what should or should not be described.763
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TODOs764

• TODO: chris, geeling make an appendix with all the hyperparameters for PopT765

• TODO: bennet write richer website description in appendix. Basically write up what will be766

displayed on the page. Put a new screenshot in.767

• DONE: chris Put parcellation figure in appendix768

• DONE: chris Put time series superposition figure in appendix769

• DONE: chris Put time course for all features in appendix770

• DONE: chris Make an appendix that has compute details of PopT771

• TODO: andrii Make appendix H in tabular form.772

• TODO: andrii (only if you have time; low priority) make a figure in the appendix for773

population level decoding over time.774

• TODO: chris / andrii Fix table 2 to have corresponding info to the data.775
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A Decoding tasks776

# Feature Description Benchmark Task
1 frame_brightness

(visual)
The mean brightness computed as
the average HSV value over all pix-
els

Binary classification: low (per-
centiles 0%-25%) vs high (75%-
100%)

2 global_flow
(visual)

A camera motion proxy. The maxi-
mal average dense optical flow vec-
tor magnitude

Same as above

3 local_flow
(visual)

A large displacement proxy. The
maximal optical flow vector magni-
tude

Same as above

4 global_flow_angle
(visual)

As 2, averaged over orientation (de-
grees) and selected by maximal mag-
nitude

2-way classification: Left vs Right
(180 degree intervals)

5 local_flow_angle
(visual)

The orientation (degrees) of the
largest local flow vector

Same as above

6 face_num
(visual)

The maximum number of faces per
frame during the word

2-way classification: 0, or ≥ 1

7 volume
(auditory)

Average root mean squared watts of
the audio

Binary classification: low (0%-
25%) vs high (75%-100%)

8 pitch
(auditory)

Average pitch of the audio Same as above

9 delta_volume
(auditory)

The difference in average RMS of
the 500ms windows pre- and post-
word onset

Same as above

10 delta_pitch
(auditory)

The difference in average pitch of the
500ms windows pre- and post-word
onset

Same as above

11 speech
(language)

Whether any speech is present in the
given time interval

Binary classification

12 onset
(language)

Whether a new sentence starts in the
interval, or there is no speech at all

Binary classification

13 gpt2_surprisal
(language)

Negative-log transformed GPT-2
word probability (given preceding
20s of language context)

Binary classification: low (0%-
25%) vs high (75%-100%)

14 word_length
(language)

Word length (ms) Same as above

15 word_gap
(language)

Difference between previous word
offset and current word onset (ms)

Same as above

16 word_index
(language)

The word index in its context sen-
tence

2-way classification: 0 (the first
word in the sentence), or other (1)

17 word_head_pos
(language)

The relative position (left/right) of
the word’s dependency tree head

Binary classification

18 word_part_speech
(language)

The word Universal Part-of-Speech
(UPOS) tag

2-way classification: verb (0), or
other (1)

19 speaker
(multimodal)

The movie character that speaks the
given word.

2-way classification: most fre-
quent speaker (0), or other (1)

Table 1: Extracted visual, auditory, and language features used to create the evaluations for
Neuroprobe. For all classification tasks, the classes were rebalanced. The difference between local
and global flow is that global is the averaged optical flow, with the average being taken over all optical
flow vectors on the screen, whereas local is the largest individual optical flow vector on the screen.
The table is adapted from Chau et al. (2024).
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B Subject and movie information777

Subj. Age (yrs.) # Elec-
trodes

Movie Recording
time (hrs)

Neuroprobe-
Lite

1
19 154 Fantastic Mr. Fox 1.35

The Martian 2.43 x
Thor: Ragnarok 1.77 x

2

12 162 Venom 1.54 x
Spider-Man: Homecoming 2.05
Guardians of the Galaxy 1.90
Guardians of the Galaxy 2 2.13 x
Avengers: Infinity War 2.30
Black Panther 1.42
Aquaman 2.19

3
18 134 Cars 2 1.64 x

Lord of the Rings 1 2.25 x
Lord of the Rings 2 (extended
edition)

3.58

4
12 188 Shrek 3 1.38 x

Megamind 1.44 x
Incredibles 0.85

5 6 156 Fantastic Mr. Fox 1.35

6 9 164 Megamind 0.68
Toy Story 1.29
Coraline 0.84

7 11 246 Cars 2 1.64 x
Megamind 1.44 x

8 4.5 162 Sesame Street Episode 0.94

9 16 106 Ant Man 1.80

10 12 216 Cars 2 1.33 x
Spider-Man: Far from Home 1.93 x

Table 2: Subject statistics Subjects in the BrainTreebank dataset, and the trials used in the benchmark
tasks. Table adapted from Wang et al. (2023). The second column shows the total number of electrodes.
The average amount of recording data per subject is 4.3 (hrs).
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Subj. Age Sex Movies Time (h) # Sent. # Words # Lemmas # Elec. # Probes
1 19 M 7, 18, 19 5.6 4372 27424 4489 154 13
2 12 M 2, 3, 4, 8, 9, 17, 21 13.5 9870 57731 9164 162 47
3 18 F 5, 11, 12 7.5 5281 31596 4547 134 12
4 12 F 10, 13, 15 3.7 4056 23876 4017 188 15
5 6 M 7 1.35 1282 7908 1481 156 12
6 9 F 6, 13, 20 2.8 3789 20089 3349 164 12
7 11 F 5, 13 3.08 3523 19068 2828 246 18
8 4 M 14 0.94 860 3994 537 162 13
9 16 F 1 1.80 1558 9235 1480 106 12

10 12 M 5, 16 3.08 3981 22147 3004 216 17
Table 3: All subjects language, electrodes and personal statistics. Columns from left to right are
the subject’s ID and information (age and gender), the IDs of the movies they watched (corresponding
to Supplementary Table 4), the cumulative movie time (hours), number of sentences, number of
words (tokens) and number of unique lemmas (canonical word forms), as well as the number of
probes the subject had and their corresponding number of electrodes. Table adapted from Wang et al.
(2024).

Unique Unique Unique
# Movie Year Length Sent. Words words Nouns nouns Verbs verbs
1 Antman 2015 7027 1558 9869 1944 1358 705 1545 580
2 Aquaman 2018 8601 1054 7233 1544 1069 520 1104 508
3 Avengers: Infinity

War
2018 8961 1523 8529 1750 1083 607 1317 495

4 Black Panther 2018 8073 1254 7580 1606 1093 553 1209 508
5 Cars 2 2011 6377 2051 11407 2037 1572 724 1664 577
6 Coraline 2009 6036 997 5433 1232 784 409 805 348
7 Fantastic Mr. Fox 2009 5205 1282 8461 1864 1229 681 1227 484
8 Guardians of the

Galaxy 1
2014 7251 1174 8295 1779 1096 603 1250 529

9 Guardians of the
Galaxy 2

2017 8146 1290 9405 1824 1224 626 1370 532

10 Incredibles 2003 6926 1521 9430 1954 1226 652 1557 591
11 Lord of the Rings

1
2001 13699 1514 10566 1998 1473 679 1487 598

12 Lord of the Rings
2

2002 14131 1716 11041 2065 1588 743 1619 646

13 Megamind 2010 5735 1472 8891 1726 1172 602 1347 496
14 Sesame Street Ep.

3990
2016 3440 860 4220 787 717 231 706 217

15 Shrek the Third 2007 5568 1063 7226 1590 977 568 1071 422
16 Spiderman: Far

From Home
2019 7764 1930 12189 1969 1459 668 1785 560

17 Spiderman:
Homecoming

2017 8008 2196 12295 2066 1583 777 1808 572

18 The Martian 2015 9081 1570 11374 2192 1757 812 1677 622
19 Thor: Ragnarok 2017 7831 1583 9683 1789 1195 599 1419 548
20 Toy Story 1 1995 4863 1320 7216 1510 1019 548 1027 395
21 Venom 2018 6727 1379 7937 1513 897 507 1217 433

Table 4: Language statistics for all movies. Columns from left to right are the movie’s ID, name,
year of production, length (seconds), number of sentences, number of words (tokens), number of
unique words (types), number of nouns, number of unique nouns, number of verbs and number of
unique verbs. Table adapted from Wang et al. (2024).
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C Composition of movies by volume778

Ant Man - 117 min Aquaman - 136 min Avengers Infinity War - 149 min

Black Panther - 134 min Cars 2 - 98 min Coraline - 94 min

Fantastic Mr Fox - 80 min Guardians Of The Galaxy - 121 min Guardians Of The Galaxy 2 - 136 min

Incredibles - 108 min Lotr 1 - 200 min Lotr 2 - 214 min

Megamind - 89 min Sesame Street Episode 3990 - 56 min Shrek The Third - 82 min

Spider Man 3 Homecoming - 133 min Spider Man Far From Home - 129 min The Martian - 145 min

Thor Ragnarok - 123 min

0 20 40 60 80 100 120

Time (minutes)

Toy Story - 77 min

0 20 40 60

Time (minutes)

Venom - 111 min

0 20 40 60 80 100

Time (minutes)

volume low high

Figure 9: Volume comparison across movies. The black line shows the normalized audio volume
over time for 18 feature-length films and one TV episode shown to subjects. Below each volume
trace, colored bars indicate periods of relatively low (red) and high (blue) volume, defined as the
bottom 25% and top 25% of volume values respectively.
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D Speech localization779

Subject 1   (N=3 sessions; N=154 electrodes) Subject 2   (N=7 sessions; N=162 electrodes)

Subject 3   (N=3 sessions; N=134 electrodes) Subject 4   (N=3 sessions; N=188 electrodes)

Subject 5   (N=1 sessions; N=156 electrodes) Subject 6   (N=3 sessions; N=164 electrodes)

Subject 7   (N=2 sessions; N=246 electrodes) Subject 8   (N=1 sessions; N=162 electrodes)

Subject 9   (N=1 sessions; N=106 electrodes) Subject 10   (N=2 sessions; N=216 electrodes)

0.00 0.05 0.10
FDR-corrected p-value

Figure 10: Electrode locations and speech selectivity across subjects. Brain reconstructions
showing electrode placement and speech-selective responses for all 10 subjects. Each dot represents
an electrode, colored by its FDR-corrected p-value from a speech vs. non-speech classification (color
scale above, yellow indicating stronger selectivity). Left and right hemispheres are shown separately,
with session counts and total electrodes noted. Speech selectivity was assessed by comparing high
gamma power (70–300 Hz, dB) during the first 125 ms after word onset to non-speech intervals of
equal duration. A two-sample t-test determined significance, with Benjamini-Hochberg correction
applied for multiple comparisons.
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E Face distribution780
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Figure 11: Distribution of faces detected per frame across different movies. Histograms show the
number of words (y-axis) that occur during frames containing different numbers of faces (x-axis) for
18 feature-length films and one TV episode (Sesame Street)
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F Splits781

Neuroprobe includes 3 different types of splits.782

Same subject/Same trial783

Same subject/Different movie This is a slightly more difficult split. It ensures completely that no784

data-contamination due to auto-correlation has occurred.785

Different subject/Different movie This is the most difficult split. It tests the model’s ability to786

generalize between subjects and stimuli.787

TODO: describe what the splits are and which trials are in each split.788
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G Neuroprobe-lite789

The following subject-trial pairs are included in Neuroprobe Lite:790

• Subject 1: Trials 1, 2791

• Subject 2: Trials 0, 4792

• Subject 3: Trials 0, 1793

• Subject 4: Trials 0, 1794

• Subject 7: Trials 0, 1795

• Subject 10: Trials 0, 1796

For every task, the number of datapoints was trimmed at 3500 datapoints (i.e. if a specific movie has797

more than 3500 annotations for any task, only the first 3500 are taken for the Lite benchmark). When798

selecting the subject/trial pairs for Neuroprobe Lite, we selected the trials that contained the most799

tasks which hit the 3500 datapoints limit.800

H Models benchmarked801

Linear For this evaluation, raw voltage traces sampled at 2048 Hz were taken from the BrainTree-802

bank data, then line noise was removed at 60± 5 Hz and the 4 harmonics, and the resulting vectors of803

sampled features were fed as input to the linear regression. We found almost identical results when804

removing line noise or passing the data raw to the linear regression.805

Linear (STFT) For this baseline evaluation, the features are the STFT of the raw signal with the806

following parameters (given that the sampling rate is 2048Hz):807

• nperseg=256808

• noverlap=0809

• window=boxcar810

After this step, the data turns into an array of arrays where first dimension is the time bin and the811

second dimension is the STFT result (a complex number); for the downstream regression, all of these812

features are concatenated together, with the real and imaginary parts of the complex features being813

split into two features each.814

Linear (spectrogram) For this baseline evaluation, first the STFT of the raw voltage signal was815

taken as in the Linear (STFT) description, and then the absolute value of each complex number was816

taken to obtain the final real number features for each example.817

BrainBERT For this evaluation, the BrainTreebank data was Laplacian rereferenced (as described818

in the original BrainBERT paper by Wang et al. (2023)), with line noise removed, and then passed into819

the BrainBERT model as provided by Wang et al. (2023). The output features were concatenated and820

used as input to the linear regression. For the electrodes which could not be Laplacian rereferenced,821

non-rereferenced data was inputted into BrainBERT. The BrainBERT model was frozen and only the822

final linear regression layer was fine tuned, in order to compare the quality of features generated by823

the foundation model.824

For all linear regression, we used the sklearn package, class LinearRegression, with the tolerance825

parameter set as 0.001. In all cases, the features were first normalized using the sklearn StandardScaler.826

We found that it helps with convergence and often produces higher regression values for the baselines.827

PopulationTransformer Off-the-shelf Population Transformer (PopT) is a SSL pretrained model for828

encoding arbitrary ensembles of iEEG electrode data for general downstream decoding (Chau et al.,829

2024). The model consists of a transformer backbone that learns functional and spatial relationships830

between input channels whose temporal activity is encoded. We use the publicly available weights831

which were pretrained on data from 10 iEEG subjects, using 5s BrainBERT temporal embeddings832

from individual channels. For Population Transformer, we followed the implementation and used833
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the weights from (Chau et al., 2024). The fine-tuning protocol is taken to be directly the same as in834

the authors’ original paper (including linear rate, number of epochs, a factor of 10 between learning835

rates of the linear output layer vs the transformer blocks, etc), but reduce the number of steps to836

steps = 1000. We finetune Population Transformer in two conditions: either by only finetuning the837

final linear output layer while keeping the rest of the model weights frozen (the “frozen” condition),838

or finetuning through the whole model (the default PopT condition).839

I Benchmark results840

TODO fill in with tabular form of fig. 8.841

J Compute requirements842

Every Linear regression was run on a CPU-only instance, with 2 virtual CPU cores and 64GB RAM843

for the population level results and 2 CPU cores with 6GB RAM for the single electrode decoding844

results. For BrainBERT, the necessary resources also included a GPU with at least 9GB of memory845

along with 128GB of RAM and 2 CPU cores. For the PopulationTransformer, the fine-tuning was846

done on 2 GPUs (NVIDIA GeForce GTX TITAN X) with at least 12GB of GPU RAM.847
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K Leaderboard848

TODO: describe leaderboard website

Figure 12: The leaderboard for the task of classifying sentence onset. The public webpage link
will be made available upon publication. TODO: revisit caption

849

L Time course of task decodability850

Figure 13: TODO: revisit caption All the plots from Figure 4 overlaid. Error bars show
standard error from variability across all electrodes (from all subjects and all sessions).
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Figure 14: TODO: revisit caption Same as Figure 7 but for all features. Pt 1
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Figure 15: TODO: revisit caption Same as Figure 7 but for all features. Pt 2
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M Region analysis851

Figure 16: TODO: revisit caption top 10-th percentile of electrodes in each region are plotted
Make it top k=100?.
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