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ABSTRACT

Memories of recent stimuli are crucial for guiding behavior, but the sensory pathways responsible for
encoding these memories are continuously bombarded by new sensory experiences. How the brain
overcomes interference between sensory input and working memory representations remains largely
unknown. To formalize the solution space, we examined recurrent neural networks that were either
hand-designed or trained using gradient descent methods, and compared these models with neural
data from two different macaque experiments. Here we report mechanisms by which neural networks
overcome sensory-memory interference using both static and dynamic coding strategies: gating of
the sensory inputs, modulating synapse strengths to achieve a strong attractor solution, and dynamic
strategies – including the extreme solution in which cells invert their feature preference during working
memory. Neural data from the medial superior temporal (MST) area of macaques, where sensory and
working memory signals first interact along the dorsal pathway, best aligned with a solution that combined
input gating and tuning inversion. Behavioral predictions from this model also matched error patterns
observed in monkeys performing a working memory task with distractors. Taken together, our results help
elucidate how working memory circuits preserve information as we continue to interact with the world,
and suggest intermediate cortical visual areas like MST may play a critical role in this computation.

1 INTRODUCTION
Our behavior is guided both by immediate sensory experiences and by memories of recently encountered
stimuli. Many studies explore how neural circuits store and maintain information in working mem-
ory (Baddeley and Hitch, 1974; Hopfield, 1982; Amit, 1989; Zipser, 1991; Miyake and Shah, 1999;
Khona and Fiete, 2022). However, it remains largely unknown how the neural circuits that support
working memory both allow information to flow into them while also preserving this information as we
continue to interact with the world (Figure 1a) (Libby and Buschman, 2021; Cueva* et al., 2021). How do
memory representations keep from being overwritten by new sensory inputs? This is the central question
of this study.

The problem of sensory-memory interference is likely widespread, as sensory features are often
encoded by broadly tuned cells, for example, direction and orientation tuning in middle temporal (MT),
and primary visual area (V1) neurons (Albright, 1984; Schiller et al., 1976). If two stimulus orientations
are presented successively at the same location (Ding et al., 2017), they provide similar inputs, via the
same set of connections, to the same set of memory units. How, then, does the system prevent the
memory of the first orientation from being overwritten by the arrival of the second? Outside of controlled
experimental settings, the problem of sensory-memory interference must still be overcome by neural
circuits as eye movements realign relevant stimuli so we effectively have sequential presentations of
stimuli in the same retinotopic positions, much like the experimental settings.

Here, we study the general problem of sensory-memory interference in the context of a class of
problems that are common to many species, such as, humans(Ma et al., 2014), monkeys(Robertson et al.,
1999; Pasternak and Greenlee, 2005; Wimmer et al., 2014), rats(Taube et al., 2000), mice(Yoder and
Taube, 2009), flies(Seelig and V., 2015; Green et al., 2017; Kim et al., 2017), and fish(Petrucco et al.,
2023); namely, remembering a circular variable that can take continuous values between 0 and 360



degrees. Theoretical models, like ring attractor circuits, have been proposed to remember these circular
variables (Skaggs et al., 1994; Ben-Yishai et al., 1995; Redish et al., 1996; Zhang, 1996; Stringer et al.,
2002; Xie et al., 2002). However, we show that a naive implementation of this memory system alters
memories of recent stimuli with subsequent sensory inputs and does not agree with experimental results
from monkey behavior.

To understand the underlying computations required to overcome the problem of sensory-memory
interference, we trained, examined, and eventually were able to engineer, recurrent neural networks
(RNNs) to solve this problem. We found an infinite RNN solution space that included gating of the
sensory inputs, modulating synapse strengths to achieve a strong attractor solution, and dynamic visual
feature coding, such that, at the extreme, cells invert their tuning over time. Each solution makes unique
experimental predictions about 1) the connectivity between neurons, and 2) how neural tuning curves
change over time. We tested whether the patterns of neuronal activity in our models were consistent
with those observed during working memory tasks in two experiments (Mendoza-Halliday et al., 2014,
2024) with single-neuron electrophysiological recordings from cortical area medial superior temporal
(MST), identified as the first area along the dorsal visual pathway to show feature-selective sustained
spiking activity during working memory in addition to selective visual responses (Mendoza-Halliday
et al., 2014). The neural data was most aligned with the Gating + Inversion of Tuning solution. This
solution was also consistent with experimental results from monkey behavior on a working memory
task with distractors (Suzuki and Gottlieb, 2013). Taken together, our results show how recurrent neural
networks are able to solve the problem of sensory-memory interference using a combination of both static
and dynamic codes, and suggest that this solution may be implemented in intermediate visual processing
stages such as area MST, where sensory and working memory signals first interact.

2 RESULTS
2.1 In recurrent neural networks, robustness to a distractor is an additional capability

beyond working memory
To investigate the mechanisms by which a neural network might overcome the problem of sensory-memory
interference, we study a working memory task with a distractor (Figure 1b). In this task, a cue stimulus
with a particular feature value between 0 and 360 degrees is presented, followed by a delay period during
which the cue is absent and must be remembered in order to subsequently report a correct response. At a
variable time during the delay period, a task-irrelevant distractor stimulus with a different feature value is
presented, and subjects must try to maintain the cue direction in working memory without interference
by the distractor feature. The cue stimulus is encoded by a population of broadly tuned feature-selective
cells (Teich and Qian, 2003), resembling a population of V1 or MT neurons with orientation or direction
tuning curves (Schiller et al., 1976; Albright, 1984).

We trained continuous-time recurrent neural networks (RNNs) (Miller and Fumarola, 2012; Mante*
et al., 2013) in two conditions: either on the full task with distractors (WM+D), or on the simple working
memory only task (WM-only) where distractors were absent. After training, RNNs from both training
conditions were able to solve the WM-only task (mean error <10°). However, RNNs in the WM-only
training condition did not generalize to the distractor task. To compare these behavioral results with
experimental data, we test the model on a variation of the WM+D task from Suzuki and Gottlieb (2013)
where the cue and distractor are shown at one of eight directions uniformly spaced 45° apart. The
distractor can either be similar (near) to the input stimulus (45° away) or far (135°/180° away) as shown in
Figure 1b. The RNNs trained without distractors exhibited error rates far greater than that of the monkeys
in Suzuki and Gottlieb’s study (Figure 1c). Additionally, the RNNs had more errors for the far distractors
than for the near distractors whereas the monkeys showed the opposite error pattern. From this finding, we
concluded that in RNN models, the ability to withstand the distractor is dissociable from, and additional
to, the ability to store a memory representation of the cue.

2.2 RNNs trained using gradient descent leverage both static connectivity and dynamic
tuning to solve the task

To gain a mechanistic understanding of how trained RNNs solve the WM+D task, we examined their
dynamics and connectivity (Figure 2).

For any given collection of RNN units, we define the functional network connectivity pattern as
the (binned and averaged) relationship between the weights connecting any pair of units, as a function
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Figure 1. In recurrent neural networks, robustness to a distractor is an additional capability
beyond working memory storage. (a) Sensory-memory interference in the real world, at the grocery
store. We see an apple on our shopping list and then can keep this item in memory even as we see other
items on our search through the store. (b) Working memory task with distractor. A cue is shown at one of
eight directions uniformly spaced 45° apart. After a variable time interval, a distractor is shown in the
WM+D condition. The goal of this task is to produce a response at the initial cue direction while ignoring
the distractor. During the testing phase, the distractor can either be near the input stimulus (45° away) or
far (135°/180° away). (c) Behavioral data (error rates) for two monkeys trained on the task. Adapted from
Suzuki and Gottlieb (2013). Networks trained on the working memory only task without a distractor
(WM-only) are not robust to the distractor (right).

of the difference in preferred stimulus directions for that pair of units. At the end of the delay period
before the distractor, the pattern of functional network connectivity between direction-selective recurrent
units resembled that of a ring attractor model with cosine connectivity (for an example network, see
Figure 2d; top right). However, contrary to the prediction of the default ring attractor model, tuning
curves of direction-selective units were not constant over time, and instead shifted largely between the cue
presentation period and the end of the delay period (for an example unit, see Figure 2a, b). In other words,
the recurrent units varied their preferred stimulus direction over time, instead of having a single fixed
value (Cueva* et al., 2021). As a result of this transformation, most recurrent units changed their preferred
input stimulus direction, as evidenced by a wide distribution of preference changes in the population
(Figure 2c).

The functional impact of these tuning changes is to decrease the effective strength of the input onto
the memory representation. The quantify the effect of this transformation, we looked at the functional
network connectivity between input direction-selective units and the recurrent units before and after the
transformation (Figure 2d, bottom). The amplitude of the connectivity pattern dramatically decreased as a
result of the transformation; both patterns were fit well by cosine curves with amplitudes decreasing from
a1 = 0.02 to a2 = 0.001 for the example RNN. Note that the effective decrease in connection strength
from the input to the recurrent units that occurs from the time of the cue period to the delay period (left
and right columns in Figure 2d), are only driven by tuning changes in the population (weights are always
kept constant after training). This finding suggested that the function of the transformation may be to
make the effect of a future input (which in this task is the distractor) weaker and more diffuse, and thus
decrease its impact on the memory representation.

Furthermore, note that because of this transformation, the amplitude of the recurrent connectivity
pattern at the end of the delay period (when the working memory is stored; a0 = 0.044; Figure 2d, top
right) is larger than that of the input projection’s functional pattern at the time of the cue (when stimulus
information enters the network; a1 = 0.02; Figure 2d, bottom left).

We observed similar results across all trained RNNs (Figure 2e). We define the functional amplitude
ratio as a2/a1, and the structural amplitude ratio as a1/a0 (in the notation above). The functional
amplitude ratio quantifies how much the tuning changes of units in the network serve to increase or
decrease the impact of the input stimulus at the time of the cue versus at the end of the delay period.
The structural amplitude ratio is a measure of the strength of the input versus recurrent connectivity, and
can be thought of as quantifying the impact of the stimulus relative to the memory attractor, or as the
“strength of the attractor.” Across RNNs, we found the functional amplitude ratio = 0.062±0.080, and
the structural amplitude ratio = 0.463±0.036 (mean ± s.d., N = 20 networks). In the next section we
will show that achieving a low value for either of the two ratios is sufficient to solve the task.
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Figure 2. RNNs trained using gradient descent manipulate both structural and functional
connectivity to solve the working memory plus distractor task. (a) Activity of one example artificial
neuron (unit) when the cue stimulus is presented at four cardinal directions. Note the change in the unit’s
preferred direction over time. (b) Tuning curves of the neuron from (a) at two points in time: in the
middle of the cue period (t=cue), and at the end of the delay period (t=end of delay). Preference change is
defined as the difference between the preferred directions at those two points in time. (c) Histogram
showing the distribution of absolute preference changes of all direction-selective neurons in the example
RNN. (d) Functional connectivity patterns between recurrent units (top row) and between the input and
the recurrent units (bottom row) sampled at the two points in time (left and right columns). For every pair
of units, the connection weight between them is plotted against the difference in their preferred cue
directions at that point in time, and then all points are binned and averaged to produce a mean population
curve. The shaded regions denote the 95% confidence interval of the mean. Cosine curves are fit to the
connectivity patterns in all conditions, with amplitudes extracted (dashed lines; a=amplitude). (e) Scatter
plot showing the structural and functional amplitude ratios across N=20 RNNs. Every point on the graph
represents a backpropagation-trained network. The dotted line shows a constant product of structural and
functional amplitude ratios, and indicates one set of networks with approximately equal performance
(Supplementary Figure S2).
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2.3 Hand-designed RNNs perform comparably to trained networks, while solving the task
using distinct strategies

There are multiple ways of solving the WM+D task in RNNs. In backpropagation-trained networks, the
solution strategies are mixed; in addition, other strategies have been described in the literature that are not
present in the trained RNNs (for example, gating). This prompted us to consider building RNNs by hand
to only implement one solution at a time.

Here, we propose four hand-designed (engineered) RNNs that solve the task using four distinct
solution strategies: Gating, Strong Attractor, Reshuffle of Tuning, and Inversion of Tuning (Figure 3). All
solutions are based on the ring attractor architecture, which has a long history of experimental support
at the level of neural activity, and is also architecturally consistent with regions in both invertebrate
and vertebrate brains (Kim et al., 2017; Hulse et al., 2021; Petrucco et al., 2023). We note that all of
our hand-designed RNNs are able to solve the distractor task, with performance comparable to that of
backpropagation-trained networks (Figure 3i).

By hand-designing RNNs to solve the WM+D task, we accomplish two goals: (1) provide inter-
pretable models that give conceptual understanding of the mechanisms that may be at play to solve the
sensory-memory interference problem in trained RNNs and in biological networks and (2) confirm that
the mechanisms described in this study can be sufficient on their own to overcome sensory-memory
interference.

2.3.1 Gating (G)
In the Gating solution (Figures 3a, 3e), information about the the input stimulus flows through a cluster of
units (a gate), which retranslates the same information to the memory cluster (a ring attractor). The gate
is inhibited by the activity of the memory ring, and this inhibition protects the first sensory input.

2.3.2 Strong Attractor (SA)
In the Strong Attractor solution (Figures 3b, 3f), the overall amplitude of the recurrent weights is much
larger than that of the input connection weights, achieving a low structural amplitude ratio (a1/a0 < 0.25).
After information about the first input stimulus (the cue) enters the network, the recurrent activity quickly
ramps up to dominate the inputs to each of the recurrent units. After that point, the distractor is not able to
substantially alter the stored information because the input projection is comparatively weak.

2.3.3 Reshuffle of Tuning (R/T)
The Reshuffle of Tuning solution achieves a low functional amplitude ratio (a2/a1 < 0.25) by introducing
misalignment between the input projections and the recurrent connectivity (Figure 3c; for details of the
mechanism, see Supplementary Figure S1). For every recurrent unit, its misalignment with the input
projection is chosen randomly and independently from a uniform distribution centered at 0◦. In other
words, each unit in the RNN has both a preferred direction for the input stimulus, determined by the
input-to-recurrent connectivity, and a preferred direction for the memory representation, determined by
the connectivity among the recurrent units; and these two preferred directions are not the same. Therefore,
units change their tuning curves over time in the delay period immediately following the first input
(Figure 3g), similar to the backpropagation-trained networks. These dynamics make the effect of the
distractor more diffuse and thus decrease its impact on the stored memory.

2.3.4 Inversion of Tuning (I/T)
The Inversion of Tuning solution, similarly to the Reshuffle of Tuning, achieves a low functional amplitude
ratio (a2/a1 ≈ 0.1) through a misalignment of input projections. However, in this solution misalignments
are not picked randomly from a uniform distribution. Instead, two subclusters of units are defined: stable
and inverting units (Figure 3d). The stable units receive aligned projections as normal. The inverting units
receive projections that are misaligned by exactly 180◦, i.e. receive strong drive from direction-selective
inputs that have opposite tuning to each units’ preferred direction in the ring attractor. The stable and
inverting units are connected together as a single ring attractor with the cosine connectivity pattern. Stable
units slightly outnumber inverting units, which leads to dynamics where the stable units keep their tuning
throughout the task, and the inverting units shift their tuning curves by 180◦ (invert their tuning; Figure 3h).
The introduced competition between the stable and inverting units weakens the input projections relative
to the recurrent weights, which decreases the impact of the distractor.
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Figure 3. Hand-designed RNNs perform comparably to backpropagation-trained networks, while
solving the task using distinct strategies. Each RNN makes distinct experimental predictions about the
connectivity between neurons, and how the preferred directions change between the time of the initial cue
and the subsequent delay period. (a-d) Hand-designed RNNs that solve the task using four distinct
solution strategies: Gating (G; a), Strong Attractor (SA; b), Reshuffle of Tuning (R/T; c), Inversion of
Tuning (I/T; d). All rings are based on the ring attractor connectivity. (e-h) Histograms showing
predictions of each model for the distribution of preference changes of the neurons. (i) Performance of
backpropagation-trained as well as hand-designed networks on the distractor task. Y-axis represents the
mean angular error between the output of the network and the desired output across many trials. Error
bars indicate the standard deviation across networks initiated from different random seeds. N=30
networks for every bar, with networks that did not converge omitted.
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2.4 RNNs can solve the task while interpolating between solution mechanisms
The impact of sensory stimuli on the memory representation can be modulated by manipulating either
the structural amplitude ratio (by decreasing the strength of input connections relative to the recurrent
weights) or the functional amplitude ratio (by introducing misalignment between input and recurrent
connectivity), or both (Figure 4d). In fact, we were able to engineer Strong Attractor + Reshuffle of
Tuning (SA+R/T) RNNs that can solve the task by relying on either of those strategies to any predefined
degree (Figure 4a). As long as the combined effect of the two mechanisms (quantified as the product of
the structural and functional amplitude ratios, a2/a0) was low enough (in our experiments, a2/a0 < 0.25),
the network performance was high on the WM+D task. The product of functional and structural amplitude
ratios strongly predicted the performance of the hand-designed network (Supplementary Figure S2).
However, a low overall ratio was not required for high performance on the WM-only task (Figure 4b). As
I/T and R/T are based on the same mechanism, the same finding holds for SA+I/T networks (Figure 4c).
As such, we found that those two strategies can be dissociated in networks, and are independent of each
other, but can be combined in any given network.

In addition, by adding a layer of gate units, any solution can be combined with the Gating solution
(Figures 4e, 4f; G+SA not shown). Finally, by manipulating the distribution of input-recurrent curve
misalignments, interpolations can be obtained between the Reshuffle of Tuning solution and the Inversion
of Tuning solution (data not shown).

Thus, interpolations can be obtained between any two solution strategies introduced in this study.
In conclusion, we show that there exists an infinite solution space for this problem of sensory-memory
interference, with behavioral performance that can be organized according to structural and functional
amplitude ratios to quantify solution mechanisms that leverage both static connectivity and dynamic
tuning.

2.5 Different solution mechanisms have distinct neural signatures
To inform future analyses, we looked for ways of experimentally differentiating between the solution
mechanisms. We found that in the delay period immediately following the input stimulus, our models
made distinct predictions for the distribution of preference changes in the population of direction selective
neurons. Neurons in the Gating and Strong Attractor solutions maintained their preference throughout the
task (Figures 3e, 3f). In the Reshuffle of Tuning, and Gating + Reshuffle of Tuning solution, we found a
diffuse pattern of preference changes that spanned the full range of possible values (Figure 3g). Finally,
the Inversion of Tuning, and Gating + Inversion of Tuning RNNs had two clusters of neurons: those that
maintained their preference, and those that inverted to the opposite direction (Figure 3h).

These findings allowed us to narrow our hypothesis space when analyzing neural data and artificial
networks. For example, our backpropagation-trained RNNs exhibited preference changes which were
most consistent with the Reshuffle of Tuning mechanism (compare Figure 2c and Figure 3g).

2.6 Neurons in macaque brain area MST exhibit inversion of tuning, consistent with the
Inversion of Tuning and Gating+Inversion of Tuning RNN solutions

To investigate how the brain might overcome sensory-memory interference, we examined neural data
from two previously reported macaque experiments by Mendoza-Halliday et al. 2014 and 2024 (Mendoza-
Halliday et al., 2014, 2024). In Mendoza-Halliday et al. 2014 monkeys performed a delayed match-to-
sample (DMS) task, and in Mendoza-Halliday et al. 2024 monkeys performed a working memory-guided
feature attention task. Both experiments requires (as a subproblem) overcoming sensory-memory inter-
ference, as some trials contained distractor stimuli before the behavioral response. The first experiment
used spatially local random dot motion stimuli and the second used full-screen random dot motion stimuli.
For a more complete description of the tasks, refer to the original studies (Mendoza-Halliday et al., 2014,
2024). In the present study, we looked specifically into the neural dynamics during the presentation of the
first stimulus and the immediately following delay period.

We focused on neural responses in the brain area medial superior temporal. The findings of Mendoza-
Halliday et al. (2014) show that MST has working memory activity, and suggest that this is the first area
along the cortical visual processing stream where sensory processing signals encounter working memory
signals (and thus is of interest in our study). Additionally, MST may play a substantial role in cognitive
computation, for example in encoding abstract categorical decisions (Wild and Treue, 2021; Zhou et al.,
2022).
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Figure 4. RNNs can solve the task while interpolating between solution mechanisms. (a) Heatmap
of mean errors on the WM+D task across the different choices of structural and functional amplitude
ratios. Every point on the heatmap represents a hand-designed Strong Attractor + Reshuffle of Tuning
RNN, where the strength of recurrent connectivity and amount of functional tuning changes are varied
independently. N=6639 networks. (b) Corresponding to (a) heatmap for the working memory only task,
without the distractor. N=6639 networks. (c) Corresponding to (a) heatmap for N=5501 Strong Attractor +
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Figure 5. Neurons from the macaque brain area MST exhibit inversion of tuning properties,
consistent with the Inversion of Tuning and Gating + Inversion of Tuning RNN solutions. (a-d)
Neural data from macaque brain area medial superior temporal (MST) in two experiments:
Mendoza-Halliday et al. 2014 (a) and Mendoza-Halliday et al. 2024 (c). Left, mean firing rate across
trials during the cue and delay periods for an example MST neuron. Right, the tuning curves in the two
time windows for the corresponding neurons. (b, d) Histogram of changes in preferred direction (absolute
value) between the cue and delay period across all selective MST neurons recorded in the 2014 (b) and
2024 (d) studies.

Results from both studies showed that in MST, there is a combination of neurons that preserve their
motion direction preference, and neurons that invert their preference, during the delay period with respect
to the cue period (for example neurons, see Figures 5a, 5c). In both cases, the distributions of absolute
preference changes contained two peaks, at 0° and 180° (Figures 5b, 5d), most consistent with the
Inversion of Tuning mechanism, as well as the Gating + Inversion of Tuning mechanism.

In light of our results with artificial networks, this finding suggests that the dynamic neural coding
of the sensory representation that takes place in MST after the disappearance of the stimulus, may be to
protect the newly obtained memory representation from potential future sensory interference.

2.7 Procrustes distance analysis suggests that neural responses in MST are most aligned
with the Gating + Inversion of Tuning mechanism

To more directly and quantitatively compare the neural responses to those generated by our introduced
solution strategies, we compared the pattern of activity from the entire population of recorded neurons to
the pattern of activity from all units in each model. We used the Procrustes distance metric (Williams et al.,
2021; Ding et al., 2021), which can be viewed as the residual distance after two neural representations
are aligned with an optimal rotation (Harvey et al., 2023). Using this metric, we constructed a pairwise
distance matrix between all models and neural recordings, using cue-period and delay-period firing rates
from every neuron (Supplementary Figure S3).

Using t-SNE, a nonlinear dimensionality reduction technique (van der Maaten and Hinton, 2008), we
embedded all models and neural data as points in a 2d space - the solution space for the sensory-memory
interference problem (Figure 6a). We found that by embedding the points in this low-dimensional space,
the clustering of networks by solution type was recovered.

We found that data from both macaque experiments had the smallest distance to the G+I/T solution
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Figure 6. Neural responses from the medial superior temporal area of macaques are most aligned
with the Gating + Inversion of Tuning mechanism. (a) The solution space of models and data is
visualized using the t-SNE algorithm on the firing rates of neurons in the cue and delay periods. Every
point represents a model network or neural dataset. (b, c) Each datapoint is the Procrustes distance
between the firing rates from all units in a model and neural responses from macaque brain area MST
(Mendoza-Halliday et al., 2014, 2024). Across both experiments, neural data from MST is most aligned
with the Gating + Inversion of Tuning mechanism. Error bars indicate the standard deviation. For (b),
p < 0.001 for all comparisons except G+I/T (n.s.); for (c), p < 0.001 for all comparisons.

(0.13 ± 0.01 and 0.20 ± 0.01 for the 2014 and 2024 experiments, respectively, as shown in Figures 6b
and 6c). In fact, in the experiments of Mendoza-Halliday et al. 2014, the distance to the G+I/T model
(0.13 ± 0.01) was comparable to the noise floor (0.11 ± 0.02). The observed Procrustes distances were,
overall, reflective of the similarity of the distribution of feature preference changes between each RNN
(Figures 3e-h) and the experimental datasets (Figures 5b,c). Notably, the lowest Procrustes distances
occurred for RNNs that included inversions of feature preference, a property observed in both datasets.
This finding was robust irrespective of whether we included neurons selective for the cue direction in
either the cue or delay periods (Figures 6b and 6c), or in both the cue and delay periods (Supplementary
Figure S4).

2.8 Behavioral predictions of Gating + Inversion of Tuning solution, but not of pure
Inversion of Tuning, are aligned with experimental behavioral data

In addition to making predictions about the neuronal activity patterns, the RNN models also make
predictions about behavioral performance in a working memory task with distractors, and more specifically,
about behavior as a function of the proximity of the distractor feature to the cue feature. Because the
experimental design in the studies of Mendoza-Halliday et al. 2014 and 2024 did not allow us to
thoroughly investigate the effects of distractors, we looked for other tasks to test behavioral predictions.
We compared our models with behavioral responses from Suzuki and Gottlieb (2013) in which monkeys
remembered the location of a cue stimulus while a distractor stimulus was presented at a different location
during the delay period. This allowed us to analyze behavioral performance as a function of the similarity
between cue and distractor features.

Models trained on the working memory task without a distractor, and the Inversion of Tuning models
predict that the error rates should be higher when the distractor stimulus is in the direction opposite or near
opposite to the cue stimulus (Figures 7b and 7c), which is not consistent with monkey behavioral data
from Suzuki and Gottlieb (2013) (Figure 7a). However, the addition of Gating to the Inversion of Tuning
solution changed the behavioral predictions of the model to be consistent with the experimental results
(Figure 7d). This result reinforced the importance of the Gating component in the Gating + Inversion of
Tuning solution as crucial for aligning the model with experimental data.

What’s driving these patterns of errors in the models? The behavior of the model is determined by the
location of the activity bump. If this activity bump is centered over the cue location then the behavioral
readout will be correct. If this activity bump is shifted far enough from the cue location by the distractor
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Figure 7. Addition of Gating to the Inversion of Tuning solution aligns behavioral predictions of
the model with experimental data. (a) Behavioral data (error rates) on the working memory plus
distractor task for two monkeys from Suzuki and Gottlieb (2013). The distractor can either be similar
(near) to the initial cue stimulus (45◦ away) or far (135◦/180◦ away). (b) A standard ring attractor
network is not robust to the distractor and strongly alters memories of recent stimuli with subsequent
inputs. (c-d) Behavioral patterns for the Inversion of Tuning (c) and Gating+Inversion of Tuning (d)
hand-designed RNN solutions, corresponding to the behavioral experiment of Suzuki and Gottlieb (2013).
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then the model response will be closer to one of the non-cue directions resulting in an error. This shift can
happen because units with preferred directions that are not at the cue direction (referred to as “side units”
in Figure 8) increase their activity. More specifically, errors occur when units with preferred directions on
one side of the cue direction become more active after the distractor stimulus is presented, and units on
the other side become less active (Figure 8a); we refer to this as the “differential modulation of side units”.
This differential modulation of side units is shown in Figure 8b and well captures the behavioral errors
for the models shown in Figure 7. For example, the Inversion of Tuning network has more errors for
distractors that are 135 degrees versus 45 degrees away from the cue direction, and correspondingly, the
differential modulation of side units is larger for distractors that are 135 degrees versus 45 degrees away
from the cue direction. More intuitively, when the cue stimulus enters the Inversion of Tuning network it
starts a competition between two bumps: the one generated by the stable units and the one generated by
the inverting units. The stable units win this competition when no distractor is presented. However, if a
distractor is presented far from the cue direction then this will add strength to the inverting bump, altering
the balance of the competition and producing an error.

The networks with gating produce the opposite pattern of behavioral errors. There are more errors,
and the differential modulation of side units is larger, when distractors are 45 versus 135 degrees away
from the cue direction. Intuitively, the reason the near distractor achieves a higher error rate is that it
can preferentially pass through the gate because those gate units were recently active (because they were
transmitting the nearby cue) and inhibition from the ring has not yet closed the gate (Figure 8c).

An important caveat with the behavioral comparison in Figure 7 is that the study of Suzuki and
Gottlieb (2013) used visuo-spatial locations around a fixation point rather than a variable along a single
continuous circular dimension such as motion direction. Though there are differences between these
two types of tasks, there is also experimental evidence that the underlying neural mechanisms rely on
continuous ring attractors in both cases. Indeed, working memory for visuo-spatial locations appears to be
governed by continuous ring attractor dynamics (Wimmer et al., 2014). In addition, by demonstrating the
close similarity between our ring attractor model and MST data (Figures 6b and 6c) our results suggest that
the underlying circuit in MST, responsible for the sustained activity during the delay, is compatible with a
ring attractor where both inverting and stably-tuned neurons are part of the same computational circuit.
We further tested the match between MST data and predictions from such a ring attractor circuit across all
cell types by verifying that the spike count correlations between pairs of stable-stable, inverting-inverting,
and stable-inverting neurons are similarly high for similarly tuned neurons while correlations across all
types of neuron pairs decrease as the difference in preferred stimulus grows (Supplementary Figures S6
and S7).

More generally, the circuit mechanisms we propose for overcoming sensory-memory interference
are theoretically beneficial for ring attractor networks across different areas and modalities, and we
hypothesize that they are likely employed beyond MST. There is indeed evidence that these inversions of
tuning are also present in primary auditory cortex to reduce interference between sensory and memory
representations (Libby and Buschman, 2021). In conclusion, we present the behavioral results for our
models alongside the results from Suzuki and Gottlieb (2013) both as a suggestive parallel between
behavioral outcomes when working memory circuits are governed by ring attractor dynamics, and to
illustrate a prediction to test by introducing a new distractor design in the tasks from Mendoza-Halliday
et al. 2014 and 2024. Our results therefore not only demonstrate the presence of inversion of tuning in
MST, but also propose a model circuit implementation protecting memories against interference that is
consistent with an array of experimental results and leads to testable hypotheses.

3 DISCUSSION
Many studies explore how neural circuits store and maintain information in working memory. However,
these circuits are not isolated memory storage devices. Instead, they must collaborate with sensory areas
that feed information into them. Thinking about working memory in this larger context immediately raises
new questions. How do the neural circuits that support working memory allow information to flow into
them while also preserving this information from being overwritten under the constant bombardment of
new sensory inputs as we continue to interact with the world? How does the brain overcome interference
between sensory inputs and memory representations? Our insights are twofold – both in a computational
and in a neurophysiological framework. In the computational framework, we show how RNNs can
overcome sensory-memory interference by combining both static and dynamic neural codes that can
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Figure 8. In RNNs, differential modulation of side units explains the patterns of behavioral error
rates. (a) The differential modulation of side units is calculated as the absolute difference in changes of
firing rates on the two flanks of the bump attractor. Higher values capture a shift of the bump from its
original location during the distractor period, indicating a likely behavioral error. (b) Comparison of
differential modulation of side units for an example near (45◦) and far (135◦) distractor position relative
to the input cue for various types of engineered RNNs: Naive Attractor, Inversion of Tuning, Gating, and
Gating+Inversion of Tuning. This analysis reveals that for Naive Attractor and Inversion of Tuning, a
distractor farther away induces a higher differential modulation of side units, however for the solutions
including gating this pattern is reversed. P < 0.001, all comparisons. (c) The increased activity of gate
units in the near distractor condition (for solutions involving gating) explains the higher differential
modulation of side units. ***P < 0.001.

be traded off to maintain constant error (Figure 4a). This understanding of the solution space allowed
us to engineer solutions that could not be constructed before, and that were not found by standard task-
optimization of RNNs. In the neurophysiological framework, we show that in macaque monkeys, after a
stimulus is presented, the distribution of orientation preferences in brain area medial superior temporal
becomes bimodal, with some neurons completely inverting their tuning. The neural activity in MST is
most consistent with the Gating + Inversion of Tuning solution, whereas task-optimized RNNs are most
consistent with the Reshuffle of Tuning and Inversion of Tuning solutions (Supplementary Figure S5)

Why does MST have neural dynamics that reduce interference between sensory inputs and memory
representations? MST is the first region along the dorsal pathway to show sustained working memory
activity (Mendoza-Halliday et al., 2014), in contrast to the adjacent and immediately upstream brain
region, MT, where information about the sensory input is tied to the presence of the visual stimulus.
The transformation of sensory representations into mnemonic representations along the dorsal pathway
occurs in the MST circuitry (Mendoza-Halliday et al., 2014) and so perhaps there is a special emphasis
on ensuring that sensory and mnemonic representations can be disambiguated.

Our results indicate that the cortical architecture in MST, which allow neurons to generate sustained
activity during working memory, is governed by ring attractor dynamics (Figures 6b and 6c), and that both
inverting and stably-tuned neurons are part of the same computational circuit. Consistent with this, the
spike count correlations between pairs of stable-stable, inverting-inverting, and stable-inverting neurons
are similarly high for similarly tuned neurons and decrease as the difference in preferred stimulus grows
(Supplementary Figures S6 and S7).

Libby and Buschman (2021), in the context of a flexible evidence integration task, also discovered
neurons which inverted their feature preference, and argued for their significance in protecting the memory
representation. Which mechanisms generate the stable and switching dynamics? Our study provides
one answer to this question: the stable and switching dynamics in the Inversion of Tuning solution
(which corresponds to the structured rotation mechanism of Libby and Buschman) arise as a result of the
recurrent interactions within the network, and structured misalignments with the input projections. One
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implication of our results is that these dynamics do not require feedback projections from downstream
areas, like prefrontal cortex, and can emerge as a result of local connectivity within a brain area. However,
it is important to point out that behavioral goals - such as the decision about which sensory stimuli to
maintain in working memory and which not to - are likely carried out by higher-order areas in parietal and
prefrontal cortex rather than in MST. Therefore, it is possible that the mechanisms that protect memory
representations from sensory interference also involve feedback from higher-order areas. Moreover,
the idea that protection from sensory-memory interference acts at the level of one single brain area or
population of neurons such as MST rests on the assumption that delay activity in that particular area plays
a causal role in working memory storage. However, it could also be possible that delay period activity in
MST is not causally involved in storage but serves a different purpose. Instead, storage mechanisms, and
therefore mechanisms to protect from sensory-memory interference and to maintain segregation between
sensory and memory coding, could be carried out in a different cortical area downstream, such as the
lateral prefrontal cortex (Mendoza-Halliday and Martinez-Trujillo, 2017) or in a more widely distributed
network of other areas (Leavitt et al., 2017; Roussy et al., 2021).

There are multiple forces that guide any given network (artificial or biological) to a specific solution
mechanism. When considering biological organisms, the diversity of possible factors can be broadly
divided into two categories: nature (e.g. evolutionary factors) and nurture (e.g. training curriculum). It is
possible that evolutionary forces are primarily responsible for constraining the solution space in biological
organisms, in which case one should expect consistency across mechanisms used by different members
of a species. In other words, different members should use similar (combinations of) solutions. This
hypothesis is consistent with our finding of similar results across neural data from the three monkeys
in two experiments. However, in other contexts it is also possible that members of a species employ
different mechanisms for solving the same task, pointing to the hypothesis that it is the individual learning
trajectory that determines the final solution. This hypothesis is supported in experimental data from Pagan
et al. (2022), where rats (a different species) were trained on a flexible integration task. Pagan et al. found
a diversity of neural mechanisms implemented by different individual rats.

Overall, the question of which factors constrain the solution space may be problem-specific and/or
modality-specific. For example, the brain may employ one solution to handle interference between motion
stimuli, but leverage a different solution when processing auditory stimuli in a different brain region. In
contrast, our results and those of Libby and Buschman suggest a similar solution, namely, the coordinated
activity of neurons with both stable and inverting tuning preferences is leveraged for both visual motion
and auditory stimuli, and likely generalizes to all sensory modalities and features.

We contrast our approach of exploring an entire solution space with the more common practice of
building a single best model to maximally explain neural data. The best-model approach is useful when
one is looking to predict a biological system’s response to novel stimuli or any kind of interventions
or lesions. However, often the best model has low interpretability and many degrees of freedom to be
optimized, which leads this approach to fall short at explaining the underlying mechanisms or principles
behind the computations. The solution space approach can uncover the mix of mechanisms behind the
computations. It was a deeper understanding of the conceptual solution space that allowed us to engineer
RNNs across a broader range of solutions (Pagan et al., 2022) and ultimately discover those that were
most parsimoniously aligned with the brain.

Taken together, our results help elucidate how recurrent neural networks are able to solve the problem
of sensory-memory interference by leveraging both static and dynamic codes, and bridges scales from
behavior to neural firing patterns to synaptic connectivity. Intriguingly, our work also suggests that, even
beyond the specific context of sensory-memory interference, the dynamic neural codes seen in the brain
may enable information to effectively “hide” from being overwritten. Finally, we propose a new role for
area MST in overcoming sensory-memory interference.
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5 METHODS
5.1 Monkey datasets
The two monkey electrophysiology datasets analyzed in this study are described in Mendoza-Halliday et
al. 2014 and Mendoza-Halliday et al. 2024 (Mendoza-Halliday et al., 2014, 2024). In Mendoza-Halliday
et al. 2014 monkeys performed a delayed match-to-sample (DMS) task, and in Mendoza-Halliday et al.
2024 monkeys performed a working memory-guided feature attention task. Both experiments required
(as a subproblem) overcoming sensory-memory interference, as some trials contained distractor stimuli
before the behavioral response. The first experiment used spatially local random dot motion stimuli
and the second used full-screen random dot motion stimuli. In the present study, we looked specifically
into the neural dynamics during the presentation of the first stimulus and the immediately following
delay period. We analyzed 182 and 672 neurons in MST from the studies of Mendoza-Halliday et al.
2014 and 2024, respectively, that were selective for the cue direction in either the cue or delay periods
(Figure 6). We analyzed 63 and 64 neurons in MST from the studies of Mendoza-Halliday et al. 2014 and
2024, respectively, that were selective for the cue direction in both the cue and delay periods (Figure 5
and Supplementary Figure S4). For a more complete description of the tasks, refer to the original
studies (Mendoza-Halliday et al., 2014, 2024).

5.2 Recurrent Neural Networks: Architecture and Training
Before discretization, the dynamics of the simulated neurons were governed by the standard continuous-
time RNN equation:

τ
dx
dt

=−x+W rec f (x)+W inI +b (1)

In this study, τ = 100 ms. The network was simulated using Euler integration with timesteps of τ/10 =
10 ms. The firing rate of each neuron, f (x), was related to its total input x through a rectified tanh
nonlinearity, f (x) = max(0, tanh(x)). All RNNs in this paper contained 100 recurrent units, with the
results being largely insensitive to network size. Each of the 100 neurons in the RNN received input
from all other neurons through the recurrent weight matrix W rec and also received external input, I(t),
through the weight matrix W in. Firing rates were linearly combined to produce the output y(t) according
to y =W out f (x). In the training and the analysis phases, Gaussian noise with s.d. 0.1 was added to the
firing rate of each neuron at each timestep. All backpropagation-trained RNNs were initialized from a
random initialization

W in =
N(0,1)√
Nneurons

,W rec =
N(0,1)√
Nneurons

,W out = 0. (2)

RNNs 5,000 training steps with Adam in Pytorch, with learning rate 0.001 for hand-designed RNNs and
0.0001 for backpropagation-trained RNNs (learning rate had to be lowered for the latter as otherwise they
would not converge in training).

5.2.1 Hand-designed RNNs
In the hand-designed networks, entries of W rec and W in were set as acos(θi −θ j), where θi stands for the
pre-defined preferred direction of neuron i. Proportionality constants, the bias b, and the linear readout
layer were optimized with Adam in Pytorch. For the Gating networks, the recurrent layer was split in
two clusters of units (of equal size). The gate units were connected to input and to the ring units using
the same cosine connectivity profile, with no recurrent connectivity within the gate units. The ring units
were connected recurrently with a cosine connectivity profile, and had additional uniform inhibitory
connections back to the gate layer. All proportionality constants were optimized using Adam in Pytorch.
For the Strong Attractor networks, the constant a was split into arec and ain, allowing arec > ain. For the
Reshuffle of Tuning networks, every artificial neuron was assigned a preferred directions for the input
and the recurrent connectivity profiles, θ in

i and θ rec
i respectively (θ in

i ̸= θ rec
i in most cases). θ rec

i were
selected to lie uniformly in the range [0,360). Then, θ in

i = θ rec
i +offset. Offsets were selected uniformly
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at random in the range [−130,130] degrees. The range of offsets was determined by a hyperparameter
sweep to produce the network with lowest average error on the task. For the Inversion of Tuning networks,
this offset was selected to either be 0◦ or 180◦, with 55% of neurons having an offset of 0◦ and 45%
having an offset of 180◦. To create the structural/functional connectivity figure, Strong Attractor and
Reshuffle of Tuning solutions were combined as follows: Every artificial neuron was assigned a θ in

i and
θ rec

i , θ in
i = θ rec

i +offset, offset was selected uniformly at random in the range [−A,A]. The proportionality
constant a was split into arec and ain, with arec = ain ∗B. We then considered the whole family of networks
for different values of A and B, where A varied from 0◦ to 160◦ and B varied from 1 to 5. For any given
network in the family, the cosine function (with a variable bias and amplitude) was fit to the connectivity
profiles, and the extracted amplitude ratios were used to compute the functional and structural ratios.

5.2.2 RNN task
In the Working Memory + Distractor (WM+D) task, the input consisted of a variable delay period (100-
200 ms) with no inputs, then the target cue direction (for 100 ms), followed by a second variable delay
(1200-1600 ms). Within this second delay, the distractor direction (sampled randomly and independently
of the target direction) was presented, 100-900 ms after the target direction was presented. After the
second delay, the network was required to output the target direction for 1000 ms. In the Working Memory
Only (WM) task, there was no distractor shown. The task input and distractor (Figure 1b) were modeled
with 100 direction-selective neurons, as described by Teich and Qian (2003); the outputs were modeled
with sin and cos. In the case of discrete cue directions as in the task of Suzuki and Gottlieb (2013), the
target selected by the RNN was taken to be the one nearest the RNN output. During training, all directions
(0-360◦) were used for the input and distractor.

5.3 Data processing
5.3.1 Preprocessing
For further analysis, for every neuron within a network, only its mean firing rate across the cue and delay
periods was considered. To exclude the transient responses right after the input stimulus disappeared, the
first 200 ms of the delay period was removed in both datasets and in all of the models. For every neuron, a
distribution of average firing rates across all experimental conditions was obtained in every window (cue
and delay). Then, for every experimental condition, the average firing rate of the neuron in that condition
was z-scored in the overall distribution. This z-score was used as the neuron’s normalized firing rate for
further analysis. For artificial neurons, smooth z-scoring function was used to avoid dividing by zero in
case of no variability in neuronal firing rates:

ri
norm =

ri −mean(r)
std(r)+0.01

, (3)

where ri
norm is the normalized (z-scored) firing rate of a given neuron in condition i, mean(r) and std(r)

are the mean and standard deviation, respectively, of firing rates across all conditions in a given window.

5.3.2 Determining the selectivity of neurons
Feature selectivity (or lack thereof) for any given neuron was determined in the following way. Given
the neuron’s window- and trial-averaged firing rates r1,r2, . . . ,rk in response to corresponding stimuli
θ1,θ2, . . . ,θk, the Direction Selectivity Index (DSI) was defined (Mazurek et al., 2014) as

DSI =

∣∣∣∣∣∑ j r j · eiθ j

∑ j r j

∣∣∣∣∣ , (4)

and the associated preferred direction as

θpref = arg

(
∑ j r j · eiθ j

∑ j r j

)
. (5)

To quantify statistical significance of the selectivity using bootstrap, the analysis above was re-run with
all the trial labels reshuffled to obtain the null DSI distribution; the likelihood of the original DSI was
tested under that distribution. For the dataset by Mendoza-Halliday et al. 2014 (Mendoza-Halliday et al.,
2014), neurons with P < 0.01 were considered direction-selective in that time window. For the dataset by
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Mendoza-Halliday et al. 2024 (Mendoza-Halliday et al., 2014), the threshold was lowered to P < 0.005 to
correct for higher type 1 error due to many comparisons. We analyzed neurons that were selective in either
the cue period or the delay period, totaling 182 and 672 neurons from the studies of Mendoza-Halliday et
al. 2014 and 2024, respectively. In Supplementary Figure S4 we also computed the Procrustes distance
between models and neural responses using a more restricted set of neurons that were selective in both
the cue period and the delay period, totaling 63 and 64 neurons from the studies of Mendoza-Halliday et
al. 2014 and 2024, respectively.

5.4 Quantification of distances between networks
To calculate the distance between two networks A and B, their neurons’ window- and trial-averaged
responses to four cardinal input stimulus directions (to accommodate the limited available neural data)
during the cue and delay task periods were used in the Procrustes distance metric (Ding et al., 2021;
Williams et al., 2021). In this study, we used a fully regularized metric with α = 1.

5.4.1 Distances between networks and neural data
What does it mean for a model to be close to the data? To interpret model-data distance, we need a
baseline based on data-to-data distance, which reflects the noise floor present in the data, and is a lower
bound that we cannot expect the models to go under. Due to limited subjects, we generated this baseline
by splitting the neuronal population in half and comparing the halves to each other, though this may create
an overly stringent baseline due to potential neuron dependence.

The data-splitting procedure used for generating the noise floor in Figure 6 is as follows. We split
the neural data into nonoverlapping groups each containing Nsample neurons (ineurons1, ineurons2). We
compute the distance between the two samples of neural data d1 = D(ineurons1, ineurons2). d1 is the
lowest distance we can hope to obtain given the variability in the neurons that were recorded. We sample
the same number of Nsample units from the RNN model (iunits), and then compute the distance between
samples of the model and the neural data d2 = D(ineurons1, iunits). For each iteration of this procedure
we get a new estimate for the distance between the model and data, and the data-to-data distance. This
procedure was repeated 100 times to obtain representative distributions for each distance.

5.4.2 Low-dimensional embedding
The low-dimensional embedding of the distance matrix was obtained via t-SNE (van der Maaten and
Hinton, 2008), using the library openTSNE (Poličar et al., 2024). The perplexity parameter was set to
the maximum valid value to maximally preserve the global structure of the data, and the embedding was
initialized with the ‘spectral’ initialization.

5.5 Code availability
Code for the analyses performed in this study will be made available upon publication.
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Figure S1. Misalignment of input projections in relation to recurrent connectivity is a strategy for
reducing sensory-memory interference. Each circle represents one unit. The color of the circle and
orientation of the black line indicates the preferred direction of the unit. In this simplified example there
are twelve sensory units and twelve memory units. (a) Connections from sensory units to memory units
have a cosine connectivity profile with excitation between units with similar preferred directions and
inhibition between units with opposite preferred directions. On the left, connections from a single sensory
unit to all memory units are shown as colored arrows with red indicating excitatory weights and blue
indicating inhibitory weights. In the center, the connectivity from all sensory to memory units is shown as
a heatmap. On the right, these same 144 connection weights are plotted as a function of the difference in
preferred directions between sensory and memory units, making the cosine connectivity easily visible. A
memory unit with a preferred direction of 0 degrees, for example, will receive excitatory inputs from
sensory units that have preferred directions near 0. (b) The preferred direction of each memory unit
changes over time to a new value that is chosen randomly from a uniform distribution centered around the
original value. These changes in preferred directions can be caused by, for example, the recurrent
connectivity between memory units. As a result of these changes, the weights from sensory to memory
units, as a function of the difference in their preferred directions, is no longer coherent (right). A memory
unit with a preferred direction of 0 degrees, for example, will now receive both excitatory and inhibitory
inputs from sensory units that have preferred directions near 0. (c) When the weights between sensory
and memory units are aligned, a bump of activity on the sensory units (green bars in panel a) will result in
positive inputs to memory units centered around the bump location. This coherent input from the sensory
units causes the final activity pattern of the memory units to shift. (d) When the weights between the
sensory and memory units are misaligned, a bump of activity on the sensory units (green bars in panel b)
will result in a mix of both positive and negative inputs to similarly tuned memory units, effectively
weakening the sensory input to memory units. The final activity pattern of the memory units will remain
largely unchanged.
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Figure S2. In hand-designed Strong Attractor + Reshuffle of Tuning networks, the product of structural
and functional amplitude ratios strongly predicts network performance. N = 4302 networks.
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Figure S3. Matrix of pairwise Procrustes distances between each pair of models and neural datasets. A
distance of zero indicates perfect alignment. N=30 networks per cluster (with networks that did not
converge in training omitted).
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Mendoza-Halliday et al. (2024)
Macaque MSTba Mendoza-Halliday et al. (2014)

Macaque MST

Only considering neurons which were selective during both cue and delay periods
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Figure S4. The Gating + Inversion of Tuning mechanism is closest to neural responses in MST
irrespective of whether we included neurons selective for the cue direction in both the cue and delay
periods (above), or in either the cue or delay periods (Figures 6b and 6c).
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Figure S5. A histogram showing the distances from all considered solutions to the RNNs trained on the
full WM+D task using backpropagation. For every network type, 10 sample networks of that type were
drawn, along with 10 sample networks trained on the WM+D task, and then the distance between them
was calculated and aggregated together.
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b

a Fixation Period

Delay Period

Figure S6. Mean spike count correlation is increased for similarly-tuned neurons. Correlations
between spike counts of neurons as a function of the absolute difference in preferred stimulus direction,
for two task windows: Fixation period (a; N = 904), and Delay period (b; N = 3206). Only those neurons
that were statistically significantly selective in the delay period are selected. The spike count correlations
shown here quantify the shared fluctuations between neuron pairs across repeated presentations of the
same stimuli. Stimuli were not shown until after the fixation period and so, during the fixation period, all
trials were included when computing correlations. Error bars indicate s.e.m.
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Stable-Stable pairs Stable-Inverting pairs Inverting-Inverting pairs

Stable-Stable pairs Stable-Inverting pairs Inverting-Inverting pairs

Figure S7. The increase in the spike count correlation for similarly-tuned neurons is present
within and across stable and inverting clusters of neurons. For all panels: left, stable-stable pairs
(preference change < 90◦ for both neurons); middle, stable-inverting pairs (preference change < 90◦ for
one neuron and > 90◦ for the other); and inverting-inverting pairs (preference change > 90◦ for both
neurons). Only those neurons that were statistically significantly selective in the delay period are selected.
Task windows: Fixation period (a; Nstable = 493, Nmixed = 310, Ninverting = 101), and Delay period (b;
Nstable = 1726, Nmixed = 1120, Ninverting = 360). The spike count correlations shown here quantify the
shared fluctuations between neuron pairs across repeated presentations of the same stimuli. Stimuli were
not shown until after the fixation period and so, during the fixation period, all trials were included when
computing correlations. Error bars indicate s.e.m.
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Figure S8. Title Description. Error bars indicate s.e.m. *P < 0.05, **P < 0.001.
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