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ABSTRACT

Developing effective world models is crucial for creating artificial agents that can
reason about and navigate complex environments. In this paper, we investigate a
deep supervision technique for encouraging the development of a world model in
a network trained end-to-end to predict the next observation. While deep supervi-
sion has been widely applied for task-specific learning, our focus is on improving
the world models. Using an experimental environment based on the Flappy Bird
game, where the agent receives only LIDAR measurements as observations, we
explore the effect of adding a linear probe component to the network’s loss func-
tion. This additional term encourages the network to encode a subset of the true
underlying world features into its hidden state. Our experiments demonstrate that
this supervision technique improves both training and test performance, enhances
training stability, and results in more easily decodable world features – even for
those world features which were not included in the training. Furthermore, we ob-
serve a reduced distribution drift in networks trained with the linear probe, partic-
ularly during high-variability phases of the game (flying between successive pipe
encounters). Including the world features loss component roughly corresponded
to doubling the model size, suggesting that the linear probe technique is partic-
ularly beneficial in compute-limited settings or when aiming to achieve the best
performance with smaller models. These findings contribute to our understanding
of how to develop more robust and sophisticated world models in artificial agents,
paving the way for further advancements in this field.

1 INTRODUCTION

Developing effective world models is a crucial aspect of artificial intelligence, as it can enable agents
to make accurate predictions of how the world will unfold, as well as how their actions will influence
the world, and plan their actions accordingly (Ha & Schmidhuber, 2018). World models allow
agents to reason about the environment and its dynamics. In the context of AI, a ”world model”
typically refers to a learned approximation of the environment’s underlying dynamics, which may
include physical laws, object interactions, and agent-environment relationships. By compressing
sensory observations into a structured latent space, world models allow agents to reason about their
surroundings and adapt to changing conditions. However, learning robust and accurate world models
remains a significant challenge, especially in complex and partially observable environments.

Recent advancements in machine learning have shown promise in learning world models through
end-to-end training of predictive recurrent neural networks (RNNs; Hafner et al. (2020)). These
networks are trained to predict the next observation based on the current observation and action,
essentially learning a model of the environment’s dynamics. However, it is unclear whether such
networks can develop implicit world models that capture the true underlying structure and features
of the environment.

In this paper, we consider an example environment – Flappy Bird with LIDAR (Figure 1) – and
investigate whether end-to-end trained predictive RNNs develop implicit world models. Crucially,
we explore techniques to encourage the emergence of such models. Specifically, we focus on the
following research question: Can an addition of a linear probe to the network’s loss function, which
encourages the decoding of true world features, improve the network’s performance and the quality
of the learned world model? This technique lies within the broader class of deep supervision (Lee
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et al., 2015; Li et al., 2022), but its application to the problem of world model learning remains
relatively unexplored.

By investigating these questions and techniques, we aim to contribute to the understanding and
development of more effective world models in artificial intelligence, ultimately leading to more
capable and adaptable agents.

1.1 RELATED WORK

Deep supervision techniques were first introduced by (Lee et al., 2015) and were extensively applied
in training vision models (Al-Barazanchi et al., 2016; Ai et al., 2017; Zou et al., 2023), with promi-
nent applications in the field of medical imaging (Zhou et al., 2017; Lin et al., 2021; Mishra et al.,
2019; Lei et al., 2018), image super-resolution Kim et al. (2016); Lai et al. (2019) and segmentation
(Peng & Wang, 2021; Yan et al., 2022). For a comprehensive review, see Li et al. (2022).

Learning recurrent world models to learn behaviors in the latent space for downstream applications
was introduced by Ha & Schmidhuber (2018), and advanced by the Dreamer sequence of models
(Hafner et al., 2020; 2022; 2024) as well as other techniques for learning world models such as
contrastive learning (Kipf et al., 2020) and applications of pretrained models of the world to physical
settings such as robotics (Wu et al., 2023; Firoozi et al., 2024)

Representations of continuous variables in recurrent neural networks (RNNs), as well as mecha-
nisms for their storage and evolution are extensively studied in the field of computational neuro-
science (Khona & Fiete, 2022; Noorman et al., 2024; Agmon & Burak, 2023; Burak & Fiete, 2009;
Darshan & Rivkind, 2022), investigating stable attractor mechanisms (Cueva et al., 2021), as well
as periodic or quasi-periodic ones (Park et al., 2023).

2 METHODS

Figure 1: Flappy Bird environment with lidar. (A) The environment. (B) The agent only observes
the lidar signal as a function of time. (C) The only available actions are no-op and flap. (D-F)
The environment provides true variables of the world, such as the player’s rotation angle, vertical
velocity, and position.
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2.1 ENVIRONMENT AND TASK DESCRIPTION

We use an experimental environment based on the Flappy Bird game1 (Figure 1A), where the bird
must successfully pass through layers of pipes by performing either a no-op action or a flap action,
which propels the bird upward (Figure 1C). The agent receives only LIDAR measurements as obser-
vations, represented by a 180-dimensional vector indicating the distance to the nearest obstacle for
each ray angle (Figure 1B). Separately, the environment also provides the true underlying world fea-
tures, such as the bird’s rotation, vertical velocity, and position (Figure 1D-F), as well as information
about the pipes.

The agent (bird) receives reward every time it successfully passes through a pair of pipes. The
episode ends whenever the bird touches any obstacle (pipe, floor, or ceiling). However, in this paper
we focus exclusively on the world model aspect of this environment, and so the rewards are not
considered.

For the experiments in this paper, we use 10,000 training rollouts of the environment collected by
an expert DQN policy (which turns into a random policy with probability 1% every timestep; this
randomness was included to encourage off-policy exploration). For testing, we use 2,000 rollouts
of the DQN policy and 2,000 rollouts from a random policy (which chooses action ”flap” with
probability 7.5% every timestep).

2.2 NETWORK ARCHITECTURE AND TRAINING

Figure 2: Network architecture and training setup. (A) The vision autoencoder compresses the
180-dimensional raw observations into an 8-dimensional latent space. (B) The world model MDN-
LSTM takes the current latent observation vector and action as inputs, and predicts the distribution
of the next latent vector and an episode end flag. Optionally, the LSTM’s hidden state is encouraged
to capture true world variables (such as player rotation angle, y position, y velocity, etc.) through a
linear probe.

The network architecture is based on that of the world models in the paper by Ha & Schmidhuber
(2018).

First, raw 180-dimensional observations are transformed into an 8-dimensional latent space using
an autoencoder (Figure 2A). The autoencoder consists of an encoder multi-layer perceptron (MLP)
E that maps the high-dimensional observations to the lower 8-dimensional latent space (outputting
the mean and variance of an 8-dimensional factored gaussian distribution), and a decoder MLP D
that reconstructs the original observations from the latent representation.

The autoencoder is trained on the collected rollouts, with L2 regularization, with the following loss:

LAE =
∑
i

(x̂i − xi)
2 +

1

2

∑
i

∥E(xi)∥2, (1)

where

x̂i = D(zi); zi ∼ N (µi, σ
2
i ); E(xi) = (µi, σi). (2)

After training, the weights of the autoencoder are frozen.

1The original implementation of the environment can be found at https://github.com/markub3327/flappy-
bird-gymnasium.
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The world model is a long short-term memory RNN (LSTM; Hochreiter & Schmidhuber (1997);
Figure 2B). This RNN takes as input the current latent observation vector (zt) and action at, and
outputs the distribution of the next latent vector (P (z̃t+1)) and an episode end flag ẽt+1. The dis-
tribution of latent vectors is represented using a mixture of 5 Gaussian variables (following the im-
plementation of the mixture density network; Graves (2014); Bishop (1994)) – that is, the network
outputs 5 tuples (µ(i), σ(i)) to represent the distribution P (z̃t+1).

The loss function is

Lpred = − 1

n

∑
t

log

[
1

5

5∑
i=1

P (zt+1 | µ(i)
t , σ

(i)
t )

]
+

10

n

∑
t

(et − ẽt)
2, (3)

where n is the number of timesteps in an episode.

Our key contribution is the (optional) addition of linear probes to the network, which attempt to de-
code the true underlying world features from the LSTM’s hidden state. The loss function is modified
to include a term proportional to the mean squared error of the linear probes, with a hyperparameter
multiplier λ. The total loss is the sum of the predictive loss and the linear probe mean squared error:

Ltotal = Lpred + λ ·MSE(linear probe) (4)

= Lpred + λ
∑
k,t

(Wkrt − fk,t)
2
, (5)

where Wk are the linear weights for world feature k; rt are the features in the recurrent layer of the
LSRM at time t, and fk,t is the value of the world feature k for the timestep t.

3 RESULTS

3.1 IMPROVED NEXT STATE PREDICTION LOSS

To assess the effects of adding linear probes during training, we trained world model RNNs for
various values of λ (20 random seeds for each choice of λ). If λ = 0, the setting is equivalent to
training on the predictive loss only, without any linear probe component.

Perhaps paradoxically, increasing the hyperparameter λ, which put more weight on the linear probe
component of the loss, did not hurt the predictive loss component. Instead, both the training and
test predictive losses decreased as λ was increased (Figure 3A-C). In fact, the predictive loss as a
function of λ continued to decrease through values as high as λ = 64.

This result suggested that the addition of the linear probe component to the loss function improved
the network’s performance without compromising its predictive capabilities. For the rest of this
paper, only networks with λ = 0 and λ = 64 will be considered and compared together.

3.2 IMPROVED DECODABILITY OF WORLD FEATURES

To assess the sophistication of the world model, we examined the performance of linear probes in
decoding true world variables from the network’s hidden state.

As expected, the world features that were included in the linear probe loss during training are more
easily decodable for λ = 64 than for λ = 0 (Figure 4; last three panels – player’s vertical position,
velocity, and rotation angle).

Interestingly however, only for λ = 64, even features which were not explicitly part of the loss
function exhibited decodability above that of an untrained randomly-initialized network (Figure 4;
all panels). This finding indicated that the addition of the linear probe component encouraged the
network to develop a more comprehensive representation of the underlying world features, perhaps
developing a more sophisticated world model.

3.3 REDUCED DISTRIBUTION DRIFT

Next, we tested the network’s ability to predict how the latent state changes over time, without
receiving constant feedback input from the environment. Specifically, we chose a certain timestep,
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Figure 3: The effect of increasing the linear probe weight λ on the original (next latent state pre-
diction) loss. Both training (A, B) and test (C) predictive losses decrease as λ increases. For every
choice of λ, 20 RNNs were initialized from different random seeds. Error bars in panels (B) and (C)
indicate the s.d.

Figure 4: Decodability of world features from the network’s hidden state for λ = 0 and λ = 64.
Every panel represents one world feature. The last three panels (player’s vertical position, velocity,
and rotation; green) represent features which were explicitly included in the loss function for λ = 64.
Note that even the features which were not explicitly part of the losss function exhibit decodability
above that of an untrained randomly-initialized network, but only for λ = 64. For every choice of
λ, four RNNs initialized from different random seeds are shown.

after which the network was cut off from the environment (stopped receiving the true input latent
vector every timestep). Instead, after the cutoff timestep, we sampled the next predicted latent state
from the network’s output and fed it back as its input in the subsequent step.

Figure 5 compares the distribution drift between networks trained with and without the linear probe.
Networks trained with the linear probe (λ = 64) exhibited smaller growth in the loss of predicting
the real latent state, indicating reduced distribution drift, but only for timesteps when the bird was
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flying between successive pipe encounters (t=10 and t=60; Figure 5A, C). Interestingly, during the
timesteps when the bird was flying through a pair of pipes, this result did not hold. This may have
to do with the fact that the changes in game state are much less predictable in those timesteps.

The results were qualitatively equivalent for both the training policy (DQN) and a random policy
(Figure 5D-F). This finding suggests effectiveness of the linear probes in maintaining a more accu-
rate prediction of the latent observation state over time.

Figure 5: Distribution drift comparison. Networks trained with the linear probe (λ = 64) exhibit
reduced distribution drift compared to those without the probe (λ = 0) for both the training policy
and a random policy. However, note that this result does not hold for the timesteps near t=35, which
correspond to the bird going through the first pair of pipes. The error bars represent s.d. across 10
random seeds.

3.4 SCALING PROPERTIES

The predictive component of the loss followed a scaling law with respect to training time (Figure 6),
for both λ = 0 and λ = 64. However, the scaling law for λ = 64 was smoother, as well as shifted
down, compared to the one for networks trained with λ = 0.

The loss of networks with and without the linear probe also followed a scaling law with respect to
model size (Figure 7). However, the curve for networks trained with λ = 64 was shifted down, such
that a network of a given size trained with the linear probe achieves performance roughly equivalent
to a network twice the size trained without the probe. This result held true at both epoch 250 and
500.

This finding suggested that the linear probe component provides a consistent performance benefit
across different stages of training and different model sizes.

3.5 TRAINING STABILITY

Finally, adding the linear probe mean squared error component to the loss function improved training
stability (Figure 8). It resulted in fewer instances of exploding gradients and training divergences,
with the divergences additionally happening later in training for λ = 64 than for λ = 0. Networks
trained with the linear probe are more likely to reach epoch 500 without diverging (30% vs 7.5% for
RNNs of size 128, 62.5% vs 10% for RNNs of size 256; Figure 8A-B, right).
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Figure 6: Scaling law of predictive loss with respect to training time. The predictive loss (Lpred) is
plotted against the training epoch on a log scale for two different values of the linear probe weight:
λ = 0 (purple) and λ = 64 (green). This plot highlights that while the linear probe improves
the network’s performance, it does not increase the slope of the scaling law of predictive loss with
training time. Training curves of 20 randomly-initialized networks is plotted for every choice of λ.

Figure 7: Scaling laws for model size. The performance of networks with and without the linear
probe follows a scaling law, but the curve for networks trained with λ = 64 is shifted down, indicat-
ing better performance for a given model size. This holds true at both (A) epoch 250 and (B) epoch
500.

4 DISCUSSION

In this study, we sought to encourage the development of world models in a recurrent neural network
trained end-to-end to predict the next observation of an agent. Specifically, we considered adding a
term to the loss function of the network, which was proportional to the mean squared error of linear
probes trying to decode the true world features from the hidden state of the model.

In our experiments, this addition demonstrated improved training and test loss, enhanced training
stability, and more easily decodable world features. We also observed reduced distribution drift
in certain cases for models trained with the linear probe. The scaling laws for both model size
and training time maintained the same slope both with and without the additional of linear probe
loss, consistent with findings in the literature on scaling laws for neural networks (Kaplan et al.,
2020). However, the networks trained with the linear probes had the loss curve shifted down, such
that, for example, a network of a given size trained with the linear probe achieved performance
roughly equivalent to a network twice the size trained without the probe. This technique may prove
especially advantageous in compute-limited settings or when aiming to achieve the best performance
with smaller models, for example when deploying models on-site in medical imaging settings (Zhou
et al., 2017; Lin et al., 2021; Mishra et al., 2019; Lei et al., 2018).
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Figure 8: Training stability with and without the linear probe. Networks trained with the linear
probe are more likely to reach epoch 500 without diverging. Here, results are shown for RNNs of
hidden size 128 (A) and 256 (B).

Our findings support the annealing technique, wherein the linear probe loss term is applied only
during the initial stages of training and gradually diminished to zero. The analysis of the loss curve
(Figure 6) shows that the slope stabilizes after a certain number of steps, indicating that the linear
probes have the most pronounced impact during the early stages of training when the network is
actively learning its foundational representations. This suggests that the technique might be particu-
larly beneficial at the beginning of training and less critical in later stages. By focusing the influence
of the probes early on, this approach enhances the decodability of world features without imposing
a lasting computational burden. Furthermore, transitioning to normal training procedures after the
initial phase would remove the additional data requirement, making this technique both efficient and
scalable. Testing this phased application of the technique is a promising direction for future work.

Moreover, the concept of leveraging additional sensory inputs aligns with applications in robotic
systems (Wu et al., 2023). When a robot is augmented with inexpensive, additional sensors, decod-
ing these inputs through the network’s latent representations can enhance its ability to interpret and
model the environment. This process facilitates improved learning by enriching the internal state of
the model with diverse sensory information. This technique is thus promising for scalable and cost-
effective advances in robotics, where this addition of sensors can unlock significant performance
gains, while allowing the models to be smaller and therefore run faster (Firoozi et al., 2024).

Overall, this study contributes to our understanding of how to encourage the development of robust
world models in end-to-end trained predictive networks. Further research in this direction may yield
valuable insight for advancing the field of artificial intelligence and developing more capable agents.
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