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ABSTRACT

Foundation models have transformed fields from natural language processing to
computer vision. Their great potential in neuroscience remains relatively un-
tapped. We present BrainTreeBenchmark (BT-bench) as the next target for the
advancement of foundation models of human intracranial brain signal. BT-bench
contains 19 standardized decoding tasks (in the visual, auditory, language and
multimodal categories), as well as defined train/test splits that evaluate perfor-
mance within or across recording sessions, and within or across human subjects.
BT-bench is based on the BrainTreebank dataset, a collection of intracranial neural
data from patients undergoing clinical monitoring via implanted stereoelectroen-
cephalography electrodes. The data were recorded while patients engaged in an
ecological passive viewing paradigm, watching full-length Hollywood movies.
We evaluate the performance of baseline decoding models on BT-bench and de-
scribe how BT-bench can enable tracking of information processing in the brain
across tasks. Code to run BT-bench, as well as a public leaderboard website for
community use, will be made available upon publication.

1 INTRODUCTION

Foundation models have driven rapid progress in domains such as natural language processing and
computer vision. Given the high-dimensionality of neural signal and advances in the ability to
obtain high-density brain recordings, there is immense potential for foundation models to transform
neuroscience. This potential remains comparatively under-developed, however recent work points to
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Figure 1: Overview of BrainTreeBenchmark. 26 movies (a) are watched by 10 epilepsy patients
with stereoelectroencephalography electrodes implanted in various brain regions (b), and the local
field potential from the implanted electrodes is available as part of the BrainTreebank dataset (c). BT-
bench turns this dataset into an evaluation benchmark by segmenting the aligned data into various
audio, language, and vision decoding tasks, such as, loudness and pitch of the audio, average pixel
brightness, etc.
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Figure 2: The leaderboard for the task of classifying sentence onset. The public webpage link
will be made available upon publication.

a surge in large pretrained models based on neural activity: Neuroformer (Antoniades et al., 2024),
BrainBERT (Wang et al., 2023), PopT (Chau et al., 2024), STNDT (Le & Shlizerman, 2022), NDT2
(Ye et al., 2023), MBrain (Cai et al., 2023), Brant (Zhang et al., 2023), MtM (Zhang et al., 2024),
and POYO (Azabou et al., 2023).

There are a number of neural spiking activity datasets from non-human animals (for example, Perich
et al. (2025); Churchland et al. (2024); Manley et al. (2024); IBL (2024)), as well as noninvasive
recording technique datasets from humans, like fMRI (Wehbe et al., 2014; LeBel et al., 2023; Nas-
tase et al., 2021; Li et al., 2022) and EEG (Zheng & Lu, 2015; Grootswagers et al., 2022; Bhattasali
et al., 2020). Here we focus on intracranial human brain signal - specifically, stereoelectroencephalo-
graphic data (SEEG; for an overview, see Parvizi & Kastner (2018)). SEEG offers high temporal
and spatial resolution that can reveal fundamental principles of cognition and language processing,
yet no standard framework exists for benchmarking progress in modeling them.

BrainTreeBenchmark (BT-bench). We introduce BT-bench (Figure 1), a new suite of 19 standard-
ized decoding tasks (Supplementary Table 2) derived from the BrainTreebank dataset, which con-
tains intracranial recordings from multiple epilepsy patients watching annotated Hollywood films.
Unlike smaller laboratory datasets, BT-bench leverages naturalistic stimuli and extensive annota-
tions, providing a challenging test bed to evaluate modern representation learning methods.

Evaluations of neural decoders will be displayed on task-specific leaderboards (Figure 2) via our
website. Machine learning engineers, neuroscientists, or anyone curious about the brain can follow
the instructions, submit a model, and see how it compares to previous submissions. We establish
well-defined train/test splits across sessions and subjects, allowing for rigorous within- and cross-
subject generalization assessments (Table 1).

Train/Test Split Description
SS-ST Same Subject - Same Trial
SS-DT Same Subject - Different Trial
DS-ST Different Subject - Same Trial
DS-DT Different Subject - Different Trial

Table 1: Train/test split options for BT-bench. The different splits allow for within- and cross-
subject, as well as within- and cross- session generalization assessments.

The Brain Treebank Dataset. The Brain Treebank (Wang et al., 2024) is a large-scale dataset of in-
tracranial electrophysiological recordings (stereoelectroencephalography; SEEG) collected while 10
human subjects (5 male, 5 female, ages 4–19; Supplementary Table 4) watched 26 total Hollywood
movies (Supplementary Table 5). Electrode placements for each subject and their speech-selective
responses are shown in Supplementary Figure 6. Spanning 43 hours of neural activity, the dataset
aligns recorded brain signals with transcribed and manually corrected speech, word onsets, and uni-
versal dependency parses across the 223,068 words in 38,572 sentences. This dataset enables the
systematic evaluation of computational models on multimodal neural decoding tasks.
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Figure 3: Performance of baseline models on the 19 tasks of BT-bench. Evaluation is done on
the same subject, same trial (SS-ST), using 5-fold cross-validation. Normalized audio volume traces
and the distribution of detected faces with corresponding word counts are shown in Supplementary
Figures 5 and 7, respectively. The performance of two simple baseline models is shown: logistic
regression (linear) either from raw voltage signal of all electrodes to the labels, or from the spec-
trogram of the signal to the labels. Neural data was cut to include one second following each word
onset. In case of multi-class classification, AUROC was computed using a one-vs-all strategy and
averaged together. Performance on different trials for the same subject were averaged together. Error
bars denote s.e.m. across all subjects.

2 EVALUATION

Comparison of basic decoding methods on BT-bench. We compare the performance of two simple
baseline models—logistic regression applied to raw voltage signals and logistic regression applied
to spectrogram features—across the 19 decoding tasks in BT-bench. Performance is evaluated using
area under the receiver operating characteristic curve (AUROC), with chance-level performance
(ROC = 0.5) included for reference.

Tracking of information processing in the brain across tasks. To investigate the time course of
linguistic information processing in the brain, we aligned neural data to word onsets and split it into
narrow time-bins (125ms width), training a separate linear decoder on each bin for multiple tasks.
Decoding performance as a function of time shows a rise and fall after the word onset timestep, with
the highest decoding performance achieved at a special point for every task (Figure 4). Interestingly,
the beginning of a new sentence can be decoded even before the word onset, hinting at the predictive
nature of processing.

3 CONCLUSION

We have presented the BrainTreeBenchmark, a suite of decoding tasks to measure the ability of
foundation models to decode multimodal language processing in the brain. This benchmark has the
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Subject 3, Session 0 - Movie “Cars 2”
N=134 electrodes

a b

Figure 4: BT-bench enables tracking of information processing in the brain across tasks. (a)
Decoding is run for all electrodes in a subject (subject 3; locations of electrodes plotted with the
FDR-corrected p-value from 0 (yellow) to ≥ 0.1 (purple); see Supplementary Figure 6). (b) For
this example trial, we trained a linear model across a sliding 125ms time window around word
onset, and evaluated decoding performance as a function of time. Error bars show s.d. across the
cross-validation runs.

potential to be used in two ways: (1) to probe the alignment between the internal representations of
foundation models and the brain, as is done in Subramaniam et al. (2024), and (2) to track progress
of fine-tuned foundation models to perform neural decoding tasks. This will drive improvements
both in decoding ability and the ability to draw neuroscience conclusions from large scale data.
As we have seen in other fields, this can also lead to a virtuous cycle in which neuroscientists are
encouraged to share more datasets to the effort. By using our framework, any question about mul-
timodal language processing in the brain can be posed as a machine learning task. Our framework
is general enough to accommodate any future annotations, allowing for investigations of low-level
language processing, such as part of speech, or high-level semantic processing such as thematic
roles or language model embeddings.

We also seek, in near-term future work, to add to the library of tasks and datasets in BT-bench. As we
continue to build out the benchmark, we will be able to study the question of how these tasks interact
with each other. Each decoding task induces a map across the brain of when and where processing
specific to that task is performed. By overlaying many of these maps, a functional picture of the
brain can emerge of which language, vision, and audio features modulate activity in each region.
We see this approach as a way of answering the long-standing neuroscience question: What is the
underlying circuit basis of language processing in the brain?
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A SUPPLEMENTARY INFORMATION

# Feature Description Benchmark Task
1 frame brightness

(visual)
The mean brightness computed as
the average HSV value over all pix-
els

Binary classification: low (per-
centiles 0%-25%) vs high (75%-
100%)

2 global flow
(visual)

A camera motion proxy. The maxi-
mal average dense optical flow vec-
tor magnitude

Same as above

3 local flow
(visual)

A large displacement proxy. The
maximal optical flow vector magni-
tude

Same as above

4 global flow angle
(visual)

As 2, averaged over orientation
(degrees) and selected by maximal
magnitude

4-way classification: which of the
cardinal directions is the closest

5 local flow angle
(visual)

The orientation (degrees) of the
largest local flow vector

Same as above

6 face num
(visual)

The maximum number of faces per
frame during the word

3-way classification: 0, 1 or ≥ 2

7 volume
(auditory)

Average root mean squared watts of
the audio

Binary classification: low (0%-
25%) vs high (75%-100%)

8 pitch
(auditory)

Average pitch of the audio Same as above

9 delta volume
(auditory)

The difference in average RMS of
the 500ms windows pre- and post-
word onset

Same as above

10 delta pitch
(auditory)

The difference in average pitch of
the 500ms windows pre- and post-
word onset

Same as above

11 speech
(language)

Whether any speech is present in the
given time interval

Binary classification

12 onset
(language)

Whether a new sentence starts in the
interval, or there is no speech at all

Binary classification

13 gpt2 surprisal
(language)

Negative-log transformed GPT-2
word probability (given preceding
20s of language context)

Same as above

14 word length
(language)

Word length (ms) Same as above

15 word gap
(language)

Difference between previous word
offset and current word onset (ms)

Same as above

16 word index
(language)

The word index in its context sen-
tence

4-way classification: 0, 1, 2, or
≥ 3

17 word head pos
(language)

The relative position (left/right) of
the word’s dependency tree head

Binary classification

18 word part speech
(language)

The word Universal Part-of-Speech
(UPOS) tag

4-way classification: noun (0),
verb (1), pronoun (2), or other (3)

19 speaker
(multimodal)

The movie character that speaks the
given word.

4-way classification: most fre-
quent speaker (0), second (1),
third (2), or other (3)

Table 2: Extracted visual, auditory, and language features used to create the evaluations for
BT-bench. For all classification tasks, the classes were rebalanced. The difference between local
and global flow is that global is the averaged optical flow, with the average being taken over all
optical flow vectors on the screen, whereas local is the largest individual optical flow vector on the
screen. The table is adapted from Chau et al. (2024).
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Subj. Age (yrs.) # Elec-
trodes

Movie Recording
time (hrs)

bt-bench
testing

1
19 154 Thor: Ragnarok 1.83

Fantastic Mr. Fox 1.75
The Martian 0.5

2

12 162 Venom 2.42
Spider-Man: Homecoming 2.42
Guardians of the Galaxy 2.5 x
Guardians of the Galaxy 2 3 x
Avengers: Infinity War 4.33
Black Panther 1.75
Aquaman 3.42

3
18 134 Cars 2 1.92 x

Lord of the Rings 1 2.67
Lord of the Rings 2 (extended
edition)

3.92

4
12 188 Incredibles 1.15

Shrek 3 1.68
Megamind 2.43

5 6 156 Fantastic Mr. Fox 1.5

6 9 164 Megamind 2.58
Toy Story 1.33
Coraline 1.83

7 11 246 Cars 2 1.75
Megamind 1.77

8 4.5 162 Sesame Street Episode 1.28

9 16 106 Ant Man 2.28

10 12 216 Cars 2 1.58 x
Spider-Man: Far from Home 2.17

Table 3: Subject statistics Subjects in the BrainTreebank dataset, and the trials used in the bench-
mark tasks. Table adapted from Wang et al. (2023). The second column shows the total number of
electrodes. The average amount of recording data per subject is 4.3 (hrs).

Subj. Age Sex Movies Time (h) # Sent. # Words # Lemmas # Elec. # Probes
1 19 M 7, 18, 19 5.6 4372 27424 4489 154 13
2 12 M 2, 3, 4, 8, 9, 17, 21 13.5 9870 57731 9164 162 47
3 18 F 5, 11, 12 7.5 5281 31596 4547 134 12
4 12 F 10, 13, 15 3.7 4056 23876 4017 188 15
5 6 M 7 1.35 1282 7908 1481 156 12
6 9 F 6, 13, 20 2.8 3789 20089 3349 164 12
7 11 F 5, 13 3.08 3523 19068 2828 246 18
8 4 M 14 0.94 860 3994 537 162 13
9 16 F 1 1.80 1558 9235 1480 106 12

10 12 M 5, 16 3.08 3981 22147 3004 216 17

Table 4: All subjects language, electrodes and personal statistics. Columns from left to right are
the subject’s ID and information (age and gender), the IDs of the movies they watched (correspond-
ing to Supplementary Table 5), the cumulative movie time (hours), number of sentences, number
of words (tokens) and number of unique lemmas (canonical word forms), as well as the number
of probes the subject had and their corresponding number of electrodes. Table adapted from Wang
et al. (2024).
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Unique Unique Unique
# Movie Year Length Sent. Words words Nouns nouns Verbs verbs
1 Antman 2015 7027 1558 9869 1944 1358 705 1545 580
2 Aquaman 2018 8601 1054 7233 1544 1069 520 1104 508
3 Avengers: Infin-

ity War
2018 8961 1523 8529 1750 1083 607 1317 495

4 Black Panther 2018 8073 1254 7580 1606 1093 553 1209 508
5 Cars 2 2011 6377 2051 11407 2037 1572 724 1664 577
6 Coraline 2009 6036 997 5433 1232 784 409 805 348
7 Fantastic Mr. Fox 2009 5205 1282 8461 1864 1229 681 1227 484
8 Guardians of the

Galaxy 1
2014 7251 1174 8295 1779 1096 603 1250 529

9 Guardians of the
Galaxy 2

2017 8146 1290 9405 1824 1224 626 1370 532

10 Incredibles 2003 6926 1521 9430 1954 1226 652 1557 591
11 Lord of the Rings

1
2001 13699 1514 10566 1998 1473 679 1487 598

12 Lord of the Rings
2

2002 14131 1716 11041 2065 1588 743 1619 646

13 Megamind 2010 5735 1472 8891 1726 1172 602 1347 496
14 Sesame Street

Ep. 3990
2016 3440 860 4220 787 717 231 706 217

15 Shrek the Third 2007 5568 1063 7226 1590 977 568 1071 422
16 Spiderman: Far

From Home
2019 7764 1930 12189 1969 1459 668 1785 560

17 Spiderman:
Homecoming

2017 8008 2196 12295 2066 1583 777 1808 572

18 The Martian 2015 9081 1570 11374 2192 1757 812 1677 622
19 Thor: Ragnarok 2017 7831 1583 9683 1789 1195 599 1419 548
20 Toy Story 1 1995 4863 1320 7216 1510 1019 548 1027 395
21 Venom 2018 6727 1379 7937 1513 897 507 1217 433

Table 5: Language statistics for all movies. Columns from left to right are the movie’s ID, name,
year of production, length (seconds), number of sentences, number of words (tokens), number of
unique words (types), number of nouns, number of unique nouns, number of verbs and number of
unique verbs. Table adapted from Wang et al. (2024).
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Ant Man - 117 min Aquaman - 136 min Avengers Infinity War - 149 min

Black Panther - 134 min Cars 2 - 98 min Coraline - 94 min

Fantastic Mr Fox - 80 min Guardians Of The Galaxy - 121 min Guardians Of The Galaxy 2 - 136 min

Incredibles - 108 min Lotr 1 - 200 min Lotr 2 - 214 min

Megamind - 89 min Sesame Street Episode 3990 - 56 min Shrek The Third - 82 min

Spider Man 3 Homecoming - 133 min Spider Man Far From Home - 129 min The Martian - 145 min
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Figure 5: Volume comparison across movies. The black line shows the normalized audio volume
over time for 18 feature-length films and one TV episode shown to subjects. Below each volume
trace, colored bars indicate periods of relatively low (red) and high (blue) volume, defined as the
bottom 25% and top 25% of volume values respectively.
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Subject 1   (N=3 sessions; N=154 electrodes) Subject 2   (N=7 sessions; N=162 electrodes)

Subject 3   (N=3 sessions; N=134 electrodes) Subject 4   (N=3 sessions; N=188 electrodes)

Subject 5   (N=1 sessions; N=156 electrodes) Subject 6   (N=3 sessions; N=164 electrodes)

Subject 7   (N=2 sessions; N=246 electrodes) Subject 8   (N=1 sessions; N=162 electrodes)

Subject 9   (N=1 sessions; N=106 electrodes) Subject 10   (N=2 sessions; N=216 electrodes)
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Figure 6: Electrode locations and speech selectivity across subjects. Brain reconstructions show-
ing electrode placement and speech-selective responses for all 10 subjects. Each dot represents an
electrode, colored by its FDR-corrected p-value from a speech vs. non-speech classification (color
scale above, yellow indicating stronger selectivity). Left and right hemispheres are shown separately,
with session counts and total electrodes noted. Speech selectivity was assessed by comparing high
gamma power (70–300 Hz, dB) during the first 125 ms after word onset to non-speech intervals of
equal duration. A two-sample t-test determined significance, with Benjamini-Hochberg correction
applied for multiple comparisons.
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Figure 7: Distribution of faces detected per frame across different movies. Histograms show the
number of words (y-axis) that occur during frames containing different numbers of faces (x-axis)
for 18 feature-length films and one TV episode (Sesame Street)
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