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ABSTRACT

High-resolution neural datasets enable foundation models for the next generation of brain-computer
interfaces and neurological treatments. The community requires rigorous benchmarks to discriminate
between competing modeling approaches, yet no standardized evaluation frameworks exist for
intracranial EEG (iEEG) recordings. To address this gap, we present Neuroprobe: a suite of decoding
tasks for studying multi-modal language processing in the brain. Unlike scalp EEG, intracranial
EEG requires invasive surgery to implant electrodes that record neural activity directly from the brain
with minimal signal distortion. Neuroprobe is built on the BrainTreebank dataset, which consists
of 40 hours of iEEG recordings from 10 human subjects performing a naturalistic movie viewing
task. Neuroprobe serves two critical functions. First, it is a mine from which neuroscience insights
can be drawn. The high temporal and spatial resolution of the labeled iEEG allows researchers to
systematically determine when and where computations for each aspect of language processing occur
in the brain by measuring the decodability of each feature across time and all electrode locations.
Using Neuroprobe, we visualize how information flows from key language and audio processing sites
in the superior temporal gyrus to sites in the prefrontal cortex. We also demonstrate the progression
from processing simple auditory features (e.g., pitch and volume) to more complex language features
(part of speech and word position in the sentence tree) in a purely data-driven manner. Second, as the
field moves toward neural foundation models trained on large-scale datasets, Neuroprobe provides a
rigorous framework for comparing competing architectures and training protocols. We found that
the linear baseline on spectrogram inputs is surprisingly strong, beating frontier foundation models
on many tasks. Neuroprobe is designed with computational efficiency and ease of use in mind. We
make the code for Neuroprobe openly available and maintain a public leaderboard of evaluation
submissions at https://neuroprobe.dev, aiming to enable rapid progress in the field of iEEG
foundation models. Code available at: https://github.com/azaho/neuroprobe

1 Introduction

The human brain constantly engages in a variety of simultaneous processing tasks: parsing speech, interpreting dynamic
visual scenes, performing social reasoning, and integrating multi-modal sensory information (Schurz et al., 2014).
However, our understanding of how this processing is organized across time and brain regions remains incomplete, and
decoding the contents of these computations in the brain remains a difficult task (Paninski & Cunningham, 2018). A
central challenge is that traditional approaches have been limited by small-scale datasets and simplified experimental
paradigms that isolate individual tasks (Nastase et al., 2020), rather than study tasks concurrently.

Recent advances in data collection have created new opportunities to address these limitations through large-scale human
intracranial electroencephalography (iEEG) datasets (Peterson et al., 2022; Evanson et al., 2025; Zada et al., 2025;
Wang et al., 2024). These datasets, collected from neurosurgical patients undergoing clinical monitoring, approach
the data volumes that have enabled breakthroughs in other domains of machine learning. Intracranial EEG differs
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Figure 1: Overview of Neuroprobe’s goals. Neuroprobe consists of classification tasks derived from human intracranial
recordings aligned with annotated stimuli. It serves two critical roles: first, by performing a decoding analysis for each
task, we can localize various aspects of multimodal language processing in the brain and discover their time evolution.
Second, Neuroprobe is a rigorous, standardized benchmark for evaluating neural decoding models, which fills a critical
need for the iEEG foundation model community.

substantially from scalp EEG. While scalp EEG suffers from significant signal distortion as neural activity passes
through the skull, cerebrospinal fluid, and scalp tissues (Nunez & Srinivasan, 2006), iEEG electrodes record directly
from the brain surface or within brain tissue, offering a substantially higher-fidelity signal. For example, intracranial
EEG preserves high-frequency bands (e.g., high-gamma activity above 70 Hz) that are largely lost in scalp EEG due to
filtering and noise (Ray & Maunsell, 2011; Lachaux et al., 2012). These high-frequency signals are closely linked to
local computation and population spiking, making intracranial recordings essential for many decoding tasks.

The emergence of foundation models of neural activity offers new possibilities for leveraging these large-scale iEEG
datasets. Recent developments such as Neuroformer (Antoniades et al., 2024), BrainBERT (Wang et al., 2023), PopT
(Chau et al., 2024), STNDT (Le & Shlizerman, 2022), NDT2 (Ye et al., 2023), MBrain (Cai et al., 2023), Brant (Zhang
et al., 2023), MtM (Zhang et al., 2024b), and POYO (Azabou et al., 2023), and others demonstrate the potential for
self-supervised learning approaches to extract meaningful representations from neural data. These foundation models
achieve superior decoding performance across multiple tasks, which directly translates to increased statistical power for
experiments that identify when and where specific cognitive processes occur in the brain. Similar probing experiments
have been previously used successfully in the field of machine learning interpretability to reverse engineer neural
networks by identifying where certain features of stimuli first become decodable (Tenney et al., 2019; Alain & Bengio,
2016). Performant iEEG foundation models have the potential to unlock novel insights about the brain, as well as
enable the next generation of brain-computer interfaces and neurological treatments.

However, the iEEG community currently lacks the standardized evaluation frameworks necessary to rigorously compare
these emerging approaches. For example, a recent review by Kuruppu et al. (2025) identifies this lack of common
standardized evaluation and stresses that establishing a common benchmark is essential for comparing the performance
of EEG foundation models performance and measuring advances in the field.

To address these critical gaps, we introduce Neuroprobe, a benchmark that is designed both to be a setting in which
neuroscience probing experiment may be run and as a measure of progress in the field of iEEG foundation models
(Figure 1). Our benchmark is derived from the publicly available BrainTreebank dataset (Wang et al., 2024), which
consists of intracranial neural recordings aligned with the corresponding movie stimuli. Neuroprobe turns this dataset
into a benchmark by defining 15 decoding tasks that span the audio, vision and language domains.

We have designed Neuroprobe to be computationally efficient and convenient for use by members of the machine
learning community, even if they do not have deep domain expertise in neuroscience. By lowering the barrier of entry,
we hope to create a healthy community and attract more researchers to these important problems. We standardize a
number of aspects of the benchmark. We select train/test splits in a variety conditions: from training and testing on the
same subject and session, to doing cross-subject and cross-session decoding. Finally, we host a centralized website that
aggregates results, and displays a leaderboard that tracks progress in decoding performance of iEEG foundation models.

In summary:

1. We introduce Neuroprobe, a large-scale multitask decoding benchmark for human intracranial EEG.
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Figure 2: From raw data to decoding tasks. As part of the BrainTreebank dataset, 26 movies (left) are watched by 10
patients with stereoelectroencephalography intracranial electrodes implanted in various brain regions (middle), and the
local field potential from the implanted electrodes is recorded (right). Neuroprobe turns this dataset into a standardized
evaluation benchmark by segmenting the aligned data into various audio, language, and vision decoding tasks, such as
volume, pitch, average frame brightness, etc.

2. We standardize splits and metrics to rigorously evaluate iEEG foundation models and encourage their develop-
ment in a direction which benefits decoding across many tasks.

3. We establish a set of strong baselines and compute the performance of state-of-the-art models on Neuroprobe.
4. Using Neuroprobe, we visualize the spatial distribution of different task processing pathways in the brain, and

track their evolution across time.

In the long run, we aim for Neuroprobe to enable measurable progress in the field of iEEG foundation models, and lead
to an improved understanding of the computations behind multi-modal sensory processing in the brain.

2 Related work

Neural recording datasets The most recently developed models for neural data have relied on several widely
accessible datasets. For non-invasive scalp EEG decoding, datasets from Zheng & Lu (2015); Grootswagers et al.
(2022); Bhattasali et al. (2020); Tangermann et al. (2012); Obeid & Picone (2016); Broderick et al. (2018); Brennan &
Hale (2019) have been used in the construction of models such as those proposed by Jiang et al. (2024); Yang et al.
(2023); Défossez et al. (2023). For fMRI decoding, (Wehbe et al., 2014; LeBel et al., 2023; Nastase et al., 2021; Li et al.,
2022; Allen et al., 2022) have led to models such as those proposed by Scotti et al. (2024); Ozcelik & VanRullen (2023).
For MEG decoding, Jan-Mathijs et al. (2019); Hebart et al. (2023) released data that have supported training of models
such as those proposed by Défossez et al. (2023); Benchetrit et al.. For neural spike decoding, data by Perich et al.
(2025); Churchland et al. (2024); Manley et al. (2024); IBL (2024) enabled foundation models such as POYO and NDT
(Azabou et al., 2023; Zhang et al., 2024a). Finally, for broadband intracranial neural activity, datasets from (Peterson
et al., 2022; Wang et al., 2024; Nejedly et al., 2020) have fueled the development of iEEG foundation models proposed
by Peterson et al. (2021); Wang et al. (2023); Chau et al. (2024); Yuan et al. (2024); Zhang et al. (2023). However,
these datasets do not provide rigorous splits or testing guidelines, so each model is difficult to compare to others.

Existing neural data benchmarks In the field of machine learning for neuroscience, benchmarks exist across various
neural data modalities. Some of the earliest involve EEG BCI decoding (Tangermann et al., 2012), but are limited
in data quality and scale by today’s standards. The NaturalScenesDataset (Allen et al., 2022) includes standardized
splits, but uses fMRI data, a non-invasive modality that suffers from extremely low temporal resolution, and focuses
mainly on visual processing. The clinical-grade Temple University Hospital EEG dataset (Obeid & Picone, 2016)
can also be used as a benchmark, but it only contains scalp EEG data, and its labels are limited to seizure detection.
Benchmarks for single-unit neural spiking data are proposed by Pei et al. (2021); Karpowicz et al. (2024); Willett et al.
(2023); Lueckmann et al. (2025), but they only contain spiking information rather than broadband signals from iEEG
that capture more aggregated neural activity (Parvizi & Kastner, 2018).

To our knowledge, Neuroprobe is the first standardized benchmark for high fidelity intracranial EEG signals.
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Figure 3: Neuroprobe allows for evaluating decoding within and across recording sessions and subjects. We
perform analyses on three different types of splits (top row). In the within-session split, we train on data from one
subject and one movie segment, and evaluate on the same subject, but another segment of the same movie. Performance
is measured via cross-validation. In the cross-session split, we train and evaluate on different movies watched by the
same subject. In the cross-subject split, we train on data from one subject and one movie and evaluate on data from an
entirely different subject and movie. The cross-subject split is the most challenging for all evaluated baseline models
(bottom row): (1) logistic regression either from raw voltage signal of all electrodes to the labels, or (2) from the
spectrogram of the signal to the labels, including laplacian re-referencing (3), as well as (4) BrainBERT (Wang et al.,
2023) and (5) PopulationTransformer (Chau et al., 2024).

3 Approach

The BrainTreebank dataset Neuroprobe uses the raw data from the BrainTreebank (Wang et al., 2024), a publicly
available dataset released under a CC BY 4.0 license. The BrainTreebank is a large-scale dataset of intracranial
electrophysiological recordings (stereoelectroencephalography; sEEG) collected while 10 human subjects (5 male,
5 female, ages 4–19; Supplementary Table 6) watched a total of 26 Hollywood movies (Supplementary Table 7).
Electrode placements vary between patients, determined solely by the clinical needs of each neurosurgical patient, and
are shown in Supplementary Figure 6. Spanning 43 hours of neural activity, the dataset aligns recorded brain signals
with transcribed and manually corrected speech, word onsets, and universal dependency parses across the 223,068
words in 38,572 sentences.

Decoding tasks We use the movie annotations and the alignment with the corresponding neural data to create a suite
of 15 visual, audio, and language decoding tasks (Supplementary Section C). For every task, the input consists of a
1-second interval of neural data, starting at each word onset. The annotation label is the target output. We formalize all
of the tasks as binary classification by thresholding the labels according to their percentile in the full distribution of that
type of annotation. For example, for the GPT2 Surprisal task, the positive label corresponds to surprisal annotations
above the 75%th percentile of the distribution within a session, and the negative label to the values below the 25%th
percentile. For non-scalar labels (such as part of speech of the word) we pick a main target class (i.e. Verb for the
part of speech task), and formulate the task as one-versus-rest classification. Since we are studying realistic language
processing with naturalistic stimuli, there are pre-existing relationships between the tasks in the movies. However, we
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Sentence Onset Speech Volume

Delta Volume Voice Pitch Word Position

Inter-word Gap GPT-2 Surprisal Head Word Position

Part of Speech Word Length Global Optical Flow

Local Optical Flow Frame Brightness Number of Faces

0.51 0.52 0.54 0.58 0.66 0.82
Decoding AUROC (log scale)

Figure 4: Neuroprobe enables the visualization of how multimodal stimuli are processed throughout the brain.
This figure shows performance of linear decoders trained separately for every electrode’s data on the cross-session
split, averaged across all recording sessions of every subject. Color denotes AUROC on a logarithmic scale to show
trends for tasks that have lower decodability. Sentence Onset is decodable throughout the brain, with a hotspot in the
temporal lobe. Language features like Part of Speech and GPT-2 Surprisal are most decodable in the superior temporal
lobe. Visual features such as Optical Flow are most decodable near the visual areas in the back of the brain, with some
decodability in the frontal lobe.

found that these relations are actually very weak, (see Supplementary Figure 2); the average correlation between tasks
is r = 0.12± 0.02, averaged across all subjects and sessions. For more details, please see Supplementary Section C.

Evaluation Splits The Neuroprobe benchmark supports three different types of splits (Figure 3):

1. Within-Session. In this split, training and test data both come from a single movie-viewing session. Decoding
results are 2-fold cross-validated with 50-50 train/test splits. Importantly, the indices for the cross-validation
splits are not drawn from the whole movie uniformly, but rather the train examples are taken from a single
contiguous block and the validation examples are taken from a separate block. This is done to prevent models
from overfitting to temporal auto-correlation (e.g. see Supplementary Figure G).

2. Cross-Session. The cross-session split even further ensures that no data contamination due to auto-correlation
can occur, and tests the model’s generalization to a novel recording session. The model is trained on data from
one movie session and tested on another movie from the same subject. Unless otherwise noted, this is the split
for most of the Neuroprobe results reported in this paper and will be the default on the leaderboard.

3. Cross-Subject This split evaluates the model’s ability to generalize across subjects and stimuli. The training
data consists of data from a single session (trial 4), viewed by subject 2, chosen because this is the longest trial
in the dataset and since subject 2 contains the most electrodes in both hemispheres, allowing for maximum
overlap with other subjects. Testing takes place using data from selected sessions for all other subjects (see
Supplementary Section A). This split in particular presents a demanding test of generalization, especially since
electrode placements vary widely between patients (see Supplementary Figure 6).
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Figure 5: Tracking multimodal sensory processing in the brain across time. Here, we show the mean performance
of the most decodable 100 electrodes per each task across time (top), where t = 0 corresponds to word onset. A linear
model is fit on spectrograms of 250ms-long sliding windows of activity. Shaded regions denote s.e.m. across electrodes.
We extract the peak of each decoding curve to obtain an approximate time ordering (bottom). Audio and linguistic
features are most decodable close to word onset, whereas visual features like Frame Brightness and Optical Flow are
most decodable around 1 second after word onset. Notably, Head Word Position, a semantic feature that pertains to the
position of the dependency parse head, is decoded later than other language features. Note that we use a window which
gives fairly coarse temporal localizations; in addition, these timings are dependent on the type of decoding analysis
being performed, so the ordering may change once more advanced models are used.

Computational efficiency The full dataset of Neuroprobe (Neuroprobe-Full) allows flexibility for researchers to pick
any of the 15 tasks and any of the 26 recording sessions in BrainTreebank. However, for the purposes of comparing
models, running experiments over all sessions and electrodes is prohibitively expensive and unnecessary. So, when
Neuroprobe is used as a benchmark (in text below, we refer to it simply as Neuroprobe when evaluating models), we
subset the data to a smaller portion of subjects and recording sessions (6 subjects, 2 trials each, for a total of 12 sessions)
for training and evaluation (Supplementary Section B).

Furthermore, to ensure computational efficiency, in the Neuroprobe benchmark, the total number of electrodes per
subject is capped at 120, such that the input for each task is a standardized matrix which has predictable memory and
computational requirements. The electrodes were selected in groups from complete probes to retain flexibiblity for
re-referencing techniques such as bipolar, common-average, or Laplacian re-referencing, which have been shown to
improve the signal to noise ratio (Vidal et al., 2015; Li et al., 2018; Tsuchimoto et al., 2021). All selected electrodes have
been localized in an average cortex atlas. To maximize the signal to noise ratio, the electrodes with the highest linear
decoding performance were chosen first. The resulting standardized electrode subsets are available in the Neuroprobe
codebase.

Submissions and Leaderboard The primary evaluation metric is the Area Under the Receiver Operating Characteris-
tic curve (AUROC). We will maintain a public leaderboard which will display model performance on this benchmark,
both on the single-electrode and population level; see Supplementary Figure 8. The evaluation rules and submission
process is outlined in detail on the Neuroprobe website and in the code repository.
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Figure 6: Time evolution of speech onset decodability across brain areas. The ‘sentence onset’ task is most
decodable in the superior temporal gyrus at the first word’s onset (t = 0). Note that the decoding performance is above
chance even before the speech onset, highlighting the predictive nature of sensory processing in the brain. As time
progresses, speech becomes more decodable in the frontal areas of the brain as well, suggesting a flow of information
from primary audio processing regions to the prefrontal cortex.

4 Results

Spatial analysis To investigate which brain areas are primarily involved in processing each Neuroprobe task, we
examined the linear decodability of all Neuroprobe features (Figure 4). Using the single electrode analysis, we find
that audio-linguistic tasks such as ‘sentence onset’, ‘speech vs. non-speech’, ‘delta volume’ are decodable at many
sites in the brain, but the highest decoding performance is found in the superior temporal gyrus, especially close to
Herschel’s and Wernicke’s area, with average AUROCs of 0.77, 0.79, and 0.69, respectively in the gyrus of the temporal
transverse. In contrast, visual features such as Optical Flow are most decodable near the visual areas in the occipital
lobe, with some decodability in the frontal lobe. Here region results are given with respect to the Destrieux atlas; for
more region-level analyses, see Supplementary Section L.

Timing analysis To study the time course of linguistic information processing in the brain, we aligned neural data
to word onsets and split it into narrow time-bins (width = 250ms), training a separate linear decoder on each bin
for multiple tasks. Decodability is reported for the cross-session split. For each task, we restrict our attention to the
top 100 electrodes with the highest decodability. Decoding performance as a function of time shows the course of
processing after the word onset (t = 0, Figure 5). Interestingly, the beginning of a new sentence can be decoded with
better-than-chance AUROC even before the word onset (µ = 0.55, σM = 0.002 at −250ms), hinting at the predictive
nature of processing. Moreover, we can find a time-ranking of features by looking at when decodability peaks for reach
feature (Figure 5). For example, we note that the high-level semantic feature ‘word head position’ is decodable only
later (decodability peaks at t = 0.625s vs. volume t = 0.375s and pitch t = 0.125s).

Spatio-Temporal analysis We do a deep dive on the sentence-onset feature (Figure 6), investigating the time course
of sentence onset decodability across brain areas. We found that right at the beginning of the sentence onset, it
is most decodable in the temporal lobe (AUROC = 0.61 at t = 0 in the transverse temporal), but decodability
spreads to the orbitofrontal cortex as time progresses (AUROC = 0.51 at t = 0.0 and AUROC = 0.54 at t = 0.5).
We repeated this analysis for every task, generating maps of sensory processing: see Supplementary Figure 9 and
Supplementary Figure 10.

Comparison of basic decoding methods on Neuroprobe To show the utility of the Neuroprobe as a benchmark, we
establish baselines and evaluate frontier models. The models we benchmark span the range of simple classifiers to large,
pretrained models.

The baselines include three linear regression models, which take as input either the raw voltage time-series inputs,
spectrogram of the signal generated using the short-time Fourier transform (spectrogram), or the spectrogram of the
Laplacian re-referenced inputs. We performed hyperparameter sweeps to determine the optimal spectrogram parameters,
including number of data samples per STFT segment, percentage of overlap between consecutive segments, as well
as the frequency range to keep; see Supplementary Figure 3 and Supplementary Figure 4). All inputs are given as a
population, i.e., the data from all electrodes across all time samples is provided as input, concatenated.

We also decode using off-the-shelf representations from pretrained models, training a regression on single-channel
BrainBERT (Wang et al., 2023) inputs as well as the pretrained PopulationTransformer (Chau et al., 2024), a pretrained
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Figure 7: Performance of baseline models on the 15 tasks of Neuroprobe (cross-session). The performance of four
models is displayed: (1) logistic regression either from raw voltage signal of all electrodes to the labels, or (2) from
the spectrogram of the signal to the labels, including laplacian re-referencing (3), as well as (4) BrainBERT (Wang
et al., 2023) and (5) PopulationTransformer (Chau et al., 2024). For a rigorous and standardized evaluation, neural data
was always cut to include one second following each word onset. Performance across different subjects and trials was
averaged together. Error bars denote s.e.m. across all subjects and trials. These results can be seen in tabular form in
Supplementary Section E.

transformer for encoding arbitrary sets of electrode activities. More details on the models available in Supplemen-
tary Section D.

Perhaps surprisingly, we found that linear decoding on spectrogram inputs with Laplacian-rereferencing is a very strong
baseline (see Supplementary Figure 3), achieving the best overall performance on the within-session (0.660± 0.005),
cross session (0.648 ± 0.004), and cross-subject split (0.539 ± 0.004). This shows the importance of optimizing
the spectrogram parameters. In comparison, linear decoding on raw voltage achieves (0.510 ± 0.001) on the cross-
subject split, while BrainBERT improves slightly over this (0.522 ± 0.002). In general, the aggregated BrainBERT
representations result in the next best decoding: 0.586± 0.004 on within-session and 0.581± 0.004 on cross-session.
Meanwhile, PopT achieves 0.545± 0.006 and 0.566± 0.004 on both splits respectively.

Finally, for the cross-session split, a breakdown by task can be seen in Figure 7. The PopulationTransformer, despite
being pretrained, underperforms on many tasks, but achieves good performance on the Sentence Onset and Speech vs.
Non-speech tasks.
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5 Conclusion

Neuroprobe can be used in several ways by different communities. Machine learning researchers can treat it as any other
benchmark and build decoding models that directly optimize for classification performance. Meanwhile, practitioners at
the intersection of ML and neuroscience can build foundation models or virtual brains based on principled neuroscience
priors and use Neuroprobe to measure improvements in the learned representations. Finally, neuroscientists can use
Neuroprobe on its own or in tandem with models from the first two communities to uncover relationships between
different aspects of multi-modal sensory processing in the brain. We hope that Neuroprobe will both drive improvements
in decoding and in our ability to draw neuroscience conclusions from large scale data. Furthermore, as we have seen in
other fields, it can also lead to a virtuous cycle in which neuroscientists are encouraged to develop and release more
open neural datasets to the effort.

Perhaps surprisingly, we found that the linear baseline with spectrogram inputs provides a very strong baseline,
outperforming foundation models on many tasks, highlighting the need for a standardized benchmark to drive progress.
Even using this simple baseline, Neuroprobe yields insights into both the spatial and temporal organization of tasks in
the brain. As decoding models improve, the clarity of such findings will improve and their variance will decrease.

It is our hope that Neuroprobe will drive significant advances in iEEG foundation models by providing a standardized,
multi-task evaluation that encourages development of more performant architectures. These improved foundation
models could translate into meaningful clinical benefits, including more precise brain-computer interfaces that offer finer
motor control for patients with paralysis, more accurate seizure prediction algorithms that provide earlier intervention
opportunities, and deeper insights into language processing that could inform rehabilitation strategies for stroke and
brain injury patients, potentially accelerating the development of next-generation neural prosthetics and therapeutic
interventions that could dramatically improve quality of life for patients with neurological conditions.

Limitations While the BrainTreebank dataset endows Neuroprobe with unprecedented combination of scale and reso-
lution, it is collected from a clinical population undergoing invasive monitoring, and results may not be overgeneralized.
At the moment, the dataset only contains 10 subjects. This low number of subjects is due to the fact that iEEG data is
difficult to get, as it requires invasive surgery to implant the electrodes. However, this is a difficulty faced by the field at
large; for example, the widely used Natural Scenes Dataset Allen et al. (2022) has 8 subjects.

Future work Our framework is general enough to accommodate future annotations, allowing for investigations
of low-level language processing, such as syllable-count, or high-level semantic processing such as thematic roles
or language model embeddings. We seek, in near-term future work, to add to the library of tasks and datasets in
Neuroprobe. As we continue to build our benchmark, researchers will be able to study the question of how various
tasks interact with each other.

Broader impacts Neuroprobe provides a standardized benchmark for evaluating models of human brain activity, with
potential applications in neuroscience, machine learning, and clinical technologies such as brain-computer interfaces.
By releasing our data, code, and leaderboard, we aim to democratize access to high-quality neural benchmarks and
enable measurable progress in the field of iEEG foundation models.
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A Splits

Neuroprobe includes 3 different types of splits.

Within-Session In this split, models are trained and tested within the same subject and the same movie session. To
avoid temporal data leakage, we are using 2-fold cross-validation using non-overlapping segments of the movie. We
found that 2-fold cross-validation yields virtually identical results to 5-fold cross-validation, while having a 60% lower
computational load (r = 0.982, p < 0.001, Supplementary Figure 1).

Cross-Session This is a slightly more difficult split. It ensures completely that no data-contamination due to auto-
correlation has occurred. The model is being trained on data from one movie session and tested on another movie from
the same subject.

Cross-Subject This is the most difficult split. It tests the model’s ability to generalize between subjects and stimuli.
Specifically, the model is trained exclusively on Subject 2, Trial 4 (Guardians of the Galaxy 2), and evaluated
independently on all other subjects and each of their movie sessions. This is especially challenging considering the
variability in electrode placements per subject. Our current approach for adapting the linear baselines includes initially
pre-processing neural data to represent activity in each cortical region (using averaging per subject/trial pair), as defined
from the 34 regions by the Desikan-Killany atlas (Desikan et al., 2006). For every pair of subjects, we only consider
those atlas regions that are present in both subjects. Then, we evaluated different linear baselines on the preprocessed
data.

Supplementary Figure 1: Extremely high correlation between 2-fold and 5-fold cross-validation results on
Neuroprobe, within-session split.

B Neuroprobe-lite

The following subject-trial pairs are included in Neuroprobe Lite:

• Subject 1: Trials 1, 2
• Subject 2: Trials 0, 4
• Subject 3: Trials 0, 1
• Subject 4: Trials 0, 1
• Subject 7: Trials 0, 1
• Subject 10: Trials 0, 1

For every task, the number of datapoints was trimmed at 3500 datapoints (i.e. if a specific movie has more than 3500
annotations for any task, only the first 3500 are taken for the Lite benchmark). When selecting the subject/trial pairs for
Neuroprobe Lite, we selected the trials that contained the most tasks which hit the 3500 datapoints limit.

Furthermore, to ensure computational efficiency, the total number of electrodes per subject is capped at 120, such that
the input for each task is a standardized matrix which has predictable memory and computational requirements. The
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electrodes were selected in groups from complete probes to retain flexibiblity for re-referencing techniques such as
bipolar, common-average, or Laplacian re-referencing, which have been shown to improve the signal to noise ratio
(Vidal et al., 2015; Li et al., 2018; Tsuchimoto et al., 2021). All selected electrodes have been localized in an average
cortex atlas. To maximize the signal to noise ratio, the electrodes with the highest linear decoding performance were
chosen first.
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C Decoding tasks

# Feature Description Benchmark Task
1 frame_brightness

(visual)
The mean brightness computed as
the average HSV value over all pix-
els

Binary classification: low (per-
centiles 0%-25%) vs high (75%-
100%)

2 global_flow
(visual)

A camera motion proxy. The maxi-
mal average dense optical flow vec-
tor magnitude

Same as above

3 local_flow
(visual)

A large displacement proxy. The
maximal optical flow vector magni-
tude

Same as above

4 face_num
(visual)

The maximum number of faces per
frame during the word

2-way classification: 0, or ≥ 1

5 volume
(auditory)

Average root mean squared watts of
the audio

Binary classification: low (0%-
25%) vs high (75%-100%)

6 pitch
(auditory)

Average pitch of the audio Same as above

7 delta_volume
(auditory)

The difference in average RMS of
the 500ms windows pre- and post-
word onset

Same as above

8 speech
(language)

Whether any speech is present in the
given time interval

Binary classification

9 onset
(language)

Whether a new sentence starts in the
interval, or there is no speech at all

Binary classification

10 gpt2_surprisal
(language)

Negative-log transformed GPT-2
word probability (given preceding
20s of language context)

Binary classification: low (0%-
25%) vs high (75%-100%)

11 word_length
(language)

Word length (ms) Same as above

12 word_gap
(language)

Difference between previous word
offset and current word onset (ms)

Same as above

13 word_index
(language)

The word index in its context sen-
tence

2-way classification: 0 (the first
word in the sentence), or other (1)

14 word_head_pos
(language)

The relative position (left/right) of
the word’s dependency tree head

Binary classification

15 word_part_speech
(language)

The word Universal Part-of-Speech
(UPOS) tag

2-way classification: verb (0), or
other (1)

Supplementary Table 1: Extracted visual, auditory, and language features used to create the evaluations for
Neuroprobe. For all classification tasks, the classes were rebalanced. The difference between local and global flow is
that global is the averaged optical flow, with the average being taken over all optical flow vectors on the screen, whereas
local is the largest individual optical flow vector on the screen. The table is adapted from Chau et al. (2024).
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Supplementary Figure 2: Correlations between tasks Averaged across movies, the off-diagonal correclation between
tasks is 0.121± 0.019. Note that the tasks Speech and Sentence Onset are not represented here, because they do not
share the same underlying data samples (specifically, when the label is 0 for those tasks, it means that there is no speech
in the movie, and many of the other tasks are undefined).
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D Models benchmarked

Linear (raw voltage) For this evaluation, raw voltage traces from the BrainTreebank data sampled at 2048 Hz were
fed as input to the linear regression. We found almost identical results when removing line noise or passing the data raw
to the linear regression, so the raw data was used in the paper. When removing line noise, it was removed at 60± 5 Hz
and the 4 harmonics,

Linear (spectrogram) For this baseline evaluation, the features are the spectrogram of the raw signal with the
following parameters (given that the sampling rate is 2048Hz):

• nperseg=512
• noverlap=75%
• window=hann
• Frequency range: 0-150Hz.

After this step, the data turns into an array of arrays where first dimension is the time bin and the second dimension is
the spectrogram result across frequencies; for the downstream regression, all of these features are concatenated together.

We performed sweeps to determine the optimal hyperparameters for the spectrogram (number of data samples per
STFT segment, percentage of overlap between consecutive segments, as well as max and min frequency to retain; see
Supplementary Figure 3 and Supplementary Figure 4).
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Supplementary Figure 3: A sweep of the spectrogram hyperparameters: data samples per STFT segment and the
overlap between consecutive segments.

BrainBERT For this evaluation, the BrainTreebank data was Laplacian rereferenced (as described in the original
BrainBERT paper by Wang et al. (2023)), with line noise removed, and then passed into the BrainBERT model as
provided by Wang et al. (2023). The output features were concatenated and used as input to the linear regression. For
the electrodes which could not be Laplacian rereferenced, non-rereferenced data was inputted into BrainBERT. The
BrainBERT model was frozen and only the final linear regression layer was fine tuned, in order to compare the quality
of features generated by the foundation model.
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Supplementary Figure 4: A sweep of the spectrogram hyperparameters: data samples per STFT segment and
the maximum frequency that is included as part of the feature vector. The analysis is done using the 75% overlap
between consecutive STFT segments.

For all linear regression, we used the sklearn package, class LinearRegression, with the tolerance parameter set as
0.001. In all cases, the features were first normalized using the sklearn StandardScaler. We found that it helps with
convergence and often produces higher regression values for the baselines.

Population Transformer Population Transformer (PopT) is a SSL pretrained model for encoding arbitrary ensembles
of iEEG electrode data for general downstream decoding (Chau et al., 2024). The model consists of a transformer
backbone that learns functional and spatial relationships between input channels whose temporal activity is encoded.
We use the publicly available weights which were pretrained on data from 10 iEEG subjects, using 5s BrainBERT
temporal embeddings from individual channels. For PopT, we followed the implementation and used the weights from
(Chau et al., 2024). The fine-tuning protocol is taken to be directly the same as in the authors’ original paper (including
linear rate, number of epochs, a factor of 10 between learning rates of the linear output layer vs the transformer blocks,
etc), but reduce the number of steps to steps = 1000. We finetune PopT in two conditions: either by only finetuning
the final linear output layer while keeping the rest of the model weights frozen (the “frozen” condition), or finetuning
through the whole model (the default PopT condition).

When running linear regressions on the cross-subject splits, in order to arrive at a subject-agnostic input, we represent
neural activity using a single average vector per region for each of the 34 regions by the Desikan-Killiany atlas (Desikan
et al., 2006). We use this same scheme when running cross-subject decoding with BrainBERT. No accommodation for
the cross-subject split was necessary for the PopulationTransformer, which is designed to handle subject-transfer. For
the PopulationTransformer, we use only those electrodes in the Neuroprobe subset that can be Laplacian-rereferenced
and are in the set of ‘clean’ electrodes (see Chau et al. (2024)) for evaluation.
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E Benchmark results

E.1 Within-Session splits

Model Overall Sentence Onset Speech Volume
Linear (voltage) 0.606 ± 0.004 0.795 ± 0.021 0.656 ± 0.022 0.595 ± 0.015
Linear (spectrogram) 0.630 ± 0.005 0.851 ± 0.025 0.825 ± 0.028 0.726 ± 0.038
Linear (Laplacian+spectrogram) 0.660 ± 0.005 0.891 ± 0.018 0.883 ± 0.018 0.717 ± 0.032
BrainBERT (untrained, frozen) 0.585 ± 0.004 0.750 ± 0.028 0.603 ± 0.020 0.570 ± 0.008
BrainBERT (frozen) 0.586 ± 0.004 0.757 ± 0.027 0.611 ± 0.022 0.583 ± 0.010
PopulationTransformer 0.545 ± 0.006 0.689 ± 0.050 0.677 ± 0.044 0.576 ± 0.018
Model Delta Volume Voice Pitch Word Position Inter-word Gap
Linear (voltage) 0.753 ± 0.019 0.536 ± 0.005 0.742 ± 0.017 0.595 ± 0.015
Linear (spectrogram) 0.718 ± 0.025 0.570 ± 0.011 0.657 ± 0.029 0.579 ± 0.019
Linear (Laplacian+spectrogram) 0.762 ± 0.026 0.578 ± 0.016 0.740 ± 0.028 0.612 ± 0.014
BrainBERT (untrained, frozen) 0.697 ± 0.020 0.524 ± 0.005 0.684 ± 0.027 0.583 ± 0.017
BrainBERT (frozen) 0.706 ± 0.021 0.524 ± 0.007 0.685 ± 0.027 0.584 ± 0.017
PopulationTransformer 0.628 ± 0.025 0.509 ± 0.008 0.519 ± 0.023 0.509 ± 0.009

Model GPT-2 Surprisal Head Word Position Part of Speech Word Length
Linear (voltage) 0.584 ± 0.009 0.570 ± 0.008 0.576 ± 0.012 0.599 ± 0.013
Linear (spectrogram) 0.570 ± 0.017 0.565 ± 0.012 0.559 ± 0.011 0.569 ± 0.017
Linear (Laplacian+spectrogram) 0.613 ± 0.017 0.602 ± 0.012 0.605 ± 0.012 0.618 ± 0.015
BrainBERT (untrained, frozen) 0.581 ± 0.013 0.587 ± 0.012 0.553 ± 0.010 0.571 ± 0.012
BrainBERT (frozen) 0.580 ± 0.015 0.585 ± 0.013 0.556 ± 0.012 0.571 ± 0.013
PopulationTransformer 0.523 ± 0.014 0.519 ± 0.008 0.513 ± 0.004 0.505 ± 0.005

Model Global Optical Flow Local Optical Flow Frame Brightness Number of Faces
Linear (voltage) 0.535 ± 0.009 0.544 ± 0.005 0.507 ± 0.013 0.499 ± 0.007
Linear (spectrogram) 0.604 ± 0.017 0.593 ± 0.020 0.533 ± 0.015 0.525 ± 0.008
Linear (Laplacian+spectrogram) 0.625 ± 0.013 0.607 ± 0.017 0.521 ± 0.025 0.530 ± 0.014
BrainBERT (untrained, frozen) 0.528 ± 0.005 0.528 ± 0.003 0.504 ± 0.005 0.505 ± 0.005
BrainBERT (frozen) 0.521 ± 0.006 0.525 ± 0.003 0.508 ± 0.012 0.503 ± 0.007
PopulationTransformer 0.509 ± 0.008 0.508 ± 0.014 0.499 ± 0.019 0.492 ± 0.010

Supplementary Table 2: Performance comparison across tasks (mean ± SEM) on the within-session split. Best
performing model for each task is shown in bold.
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E.2 Cross-Session splits

Model Overall Sentence Onset Speech Volume
Linear (voltage) 0.576 ± 0.003 0.728 ± 0.021 0.611 ± 0.014 0.564 ± 0.007
Linear (spectrogram) 0.626 ± 0.005 0.861 ± 0.016 0.849 ± 0.020 0.727 ± 0.029
Linear (Laplacian+spectrogram) 0.648 ± 0.004 0.904 ± 0.012 0.889 ± 0.018 0.714 ± 0.023
BrainBERT (untrained, frozen) 0.574 ± 0.004 0.724 ± 0.030 0.603 ± 0.015 0.560 ± 0.008
BrainBERT (frozen) 0.581 ± 0.004 0.743 ± 0.029 0.631 ± 0.016 0.572 ± 0.008
PopulationTransformer 0.566 ± 0.004 0.774 ± 0.028 0.716 ± 0.027 0.574 ± 0.012
Model Delta Volume Voice Pitch Word Position Inter-word Gap
Linear (voltage) 0.707 ± 0.011 0.529 ± 0.005 0.664 ± 0.028 0.554 ± 0.011
Linear (spectrogram) 0.702 ± 0.025 0.564 ± 0.007 0.648 ± 0.029 0.560 ± 0.016
Linear (Laplacian+spectrogram) 0.734 ± 0.020 0.579 ± 0.016 0.691 ± 0.028 0.590 ± 0.016
BrainBERT (untrained, frozen) 0.680 ± 0.019 0.508 ± 0.005 0.664 ± 0.029 0.564 ± 0.016
BrainBERT (frozen) 0.692 ± 0.020 0.509 ± 0.005 0.661 ± 0.031 0.571 ± 0.017
PopulationTransformer 0.646 ± 0.022 0.510 ± 0.008 0.559 ± 0.024 0.531 ± 0.007

Model GPT-2 Surprisal Head Word Position Part of Speech Word Length
Linear (voltage) 0.561 ± 0.011 0.537 ± 0.005 0.569 ± 0.009 0.558 ± 0.011
Linear (spectrogram) 0.567 ± 0.013 0.557 ± 0.011 0.564 ± 0.012 0.564 ± 0.014
Linear (Laplacian+spectrogram) 0.593 ± 0.012 0.580 ± 0.009 0.610 ± 0.013 0.609 ± 0.011
BrainBERT (untrained, frozen) 0.578 ± 0.013 0.573 ± 0.015 0.553 ± 0.012 0.561 ± 0.013
BrainBERT (frozen) 0.580 ± 0.014 0.572 ± 0.014 0.556 ± 0.012 0.559 ± 0.013
PopulationTransformer 0.556 ± 0.015 0.524 ± 0.006 0.502 ± 0.005 0.523 ± 0.006

Model Global Optical Flow Local Optical Flow Frame Brightness Number of Faces
Linear (voltage) 0.528 ± 0.004 0.523 ± 0.003 0.494 ± 0.009 0.509 ± 0.005
Linear (spectrogram) 0.580 ± 0.015 0.576 ± 0.014 0.546 ± 0.018 0.520 ± 0.005
Linear (Laplacian+spectrogram) 0.595 ± 0.012 0.578 ± 0.010 0.535 ± 0.018 0.525 ± 0.010
BrainBERT (untrained, frozen) 0.521 ± 0.003 0.529 ± 0.004 0.500 ± 0.002 0.498 ± 0.002
BrainBERT (frozen) 0.527 ± 0.003 0.534 ± 0.005 0.506 ± 0.006 0.497 ± 0.002
PopulationTransformer 0.529 ± 0.008 0.528 ± 0.009 0.504 ± 0.009 0.512 ± 0.005

Supplementary Table 3: Performance comparison across tasks (mean ± SEM) on the cross-session split. Best performing
model for each task is shown in bold.
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E.3 Cross-Subject splits

Model Overall Sentence Onset Speech Volume
Linear (voltage) 0.510 ± 0.001 0.539 ± 0.013 0.508 ± 0.006 0.513 ± 0.004
Linear (spectrogram) 0.528 ± 0.003 0.621 ± 0.024 0.585 ± 0.018 0.530 ± 0.008
Linear (Laplacian+spectrogram) 0.539 ± 0.004 0.673 ± 0.037 0.642 ± 0.038 0.527 ± 0.010
BrainBERT (untrained, frozen) 0.527 ± 0.002 0.585 ± 0.014 0.537 ± 0.007 0.524 ± 0.003
BrainBERT (frozen) 0.522 ± 0.002 0.582 ± 0.013 0.537 ± 0.005 0.521 ± 0.003
PopulationTransformer 0.526 ± 0.004 0.638 ± 0.031 0.594 ± 0.035 0.526 ± 0.012
Model Delta Volume Voice Pitch Word Position Inter-word Gap
Linear (voltage) 0.533 ± 0.010 0.503 ± 0.002 0.539 ± 0.009 0.511 ± 0.003
Linear (spectrogram) 0.555 ± 0.011 0.505 ± 0.005 0.552 ± 0.013 0.508 ± 0.006
Linear (Laplacian+spectrogram) 0.568 ± 0.013 0.505 ± 0.002 0.571 ± 0.022 0.515 ± 0.008
BrainBERT (untrained, frozen) 0.590 ± 0.010 0.505 ± 0.003 0.574 ± 0.015 0.513 ± 0.003
BrainBERT (frozen) 0.574 ± 0.010 0.507 ± 0.002 0.549 ± 0.012 0.510 ± 0.003
PopulationTransformer 0.573 ± 0.016 0.509 ± 0.005 0.503 ± 0.007 0.519 ± 0.005

Model GPT-2 Surprisal Head Word Position Part of Speech Word Length
Linear (voltage) 0.510 ± 0.005 0.504 ± 0.003 0.495 ± 0.003 0.502 ± 0.003
Linear (spectrogram) 0.510 ± 0.004 0.511 ± 0.004 0.509 ± 0.003 0.509 ± 0.003
Linear (Laplacian+spectrogram) 0.508 ± 0.003 0.521 ± 0.008 0.508 ± 0.006 0.508 ± 0.005
BrainBERT (untrained, frozen) 0.522 ± 0.005 0.530 ± 0.005 0.517 ± 0.003 0.509 ± 0.004
BrainBERT (frozen) 0.511 ± 0.004 0.524 ± 0.004 0.509 ± 0.004 0.504 ± 0.004
PopulationTransformer 0.522 ± 0.007 0.509 ± 0.007 0.498 ± 0.005 0.498 ± 0.004

Model Global Optical Flow Local Optical Flow Frame Brightness Number of Faces
Linear (voltage) 0.500 ± 0.004 0.500 ± 0.002 0.493 ± 0.002 0.501 ± 0.003
Linear (spectrogram) 0.508 ± 0.007 0.506 ± 0.009 0.514 ± 0.008 0.496 ± 0.003
Linear (Laplacian+spectrogram) 0.515 ± 0.005 0.513 ± 0.005 0.499 ± 0.004 0.508 ± 0.004
BrainBERT (untrained, frozen) 0.503 ± 0.003 0.501 ± 0.006 0.502 ± 0.002 0.500 ± 0.003
BrainBERT (frozen) 0.501 ± 0.002 0.498 ± 0.004 0.506 ± 0.004 0.501 ± 0.004
PopulationTransformer 0.503 ± 0.007 0.500 ± 0.010 0.502 ± 0.009 0.494 ± 0.004

Supplementary Table 4: Performance comparison across tasks (mean ± SEM) on the cross-subject split. Best performing
model for each task is shown in bold.
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F Subject and movie information

Subj. Age (yrs.) # Elec-
trodes

Movie Recording
time (hrs)

Neuroprobe

1
19 154 Fantastic Mr. Fox 1.35

The Martian 2.43 x
Thor: Ragnarok 1.77 x

2

12 162 Venom 1.54 x
Spider-Man: Homecoming 2.05
Guardians of the Galaxy 1.90
Guardians of the Galaxy 2 2.13 x
Avengers: Infinity War 2.30
Black Panther 1.42
Aquaman 2.19

3
18 134 Cars 2 1.64 x

Lord of the Rings 1 2.25 x
Lord of the Rings 2 (extended
edition)

3.58

4
12 188 Shrek 3 1.38 x

Megamind 1.44 x
Incredibles 0.85

5 6 156 Fantastic Mr. Fox 1.35

6 9 164 Megamind 0.68
Toy Story 1.29
Coraline 0.84

7 11 246 Cars 2 1.64 x
Megamind 1.44 x

8 4.5 162 Sesame Street Episode 0.94

9 16 106 Ant Man 1.80

10 12 216 Cars 2 1.33 x
Spider-Man: Far from Home 1.93 x

Supplementary Table 5: Subject statistics Subjects in the BrainTreebank dataset, and the trials used in the benchmark
tasks. Table adapted from Wang et al. (2023). The second column shows the total number of electrodes. The average
amount of recording data per subject is 4.3 (hrs).
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Subj. Age Sex Movies Time (h) # Sent. # Words # Lemmas # Elec. # Probes
1 19 M 7, 18, 19 5.6 4372 27424 4489 154 13
2 12 M 2, 3, 4, 8, 9, 17, 21 13.5 9870 57731 9164 162 47
3 18 F 5, 11, 12 7.5 5281 31596 4547 134 12
4 12 F 10, 13, 15 3.7 4056 23876 4017 188 15
5 6 M 7 1.35 1282 7908 1481 156 12
6 9 F 6, 13, 20 2.8 3789 20089 3349 164 12
7 11 F 5, 13 3.08 3523 19068 2828 246 18
8 4 M 14 0.94 860 3994 537 162 13
9 16 F 1 1.80 1558 9235 1480 106 12

10 12 M 5, 16 3.08 3981 22147 3004 216 17
Supplementary Table 6: All subjects language, electrodes and personal statistics. Columns from left to right are the
subject’s ID and information (age and gender), the IDs of the movies they watched (corresponding to Supplementary
Table 7), the cumulative movie time (hours), number of sentences, number of words (tokens) and number of unique
lemmas (canonical word forms), as well as the number of probes the subject had and their corresponding number of
electrodes. Table adapted from Wang et al. (2024).

Unique Unique Unique
# Movie Year Length Sent. Words words Nouns nouns Verbs verbs
1 Antman 2015 7027 1558 9869 1944 1358 705 1545 580
2 Aquaman 2018 8601 1054 7233 1544 1069 520 1104 508
3 Avengers: Infinity

War
2018 8961 1523 8529 1750 1083 607 1317 495

4 Black Panther 2018 8073 1254 7580 1606 1093 553 1209 508
5 Cars 2 2011 6377 2051 11407 2037 1572 724 1664 577
6 Coraline 2009 6036 997 5433 1232 784 409 805 348
7 Fantastic Mr. Fox 2009 5205 1282 8461 1864 1229 681 1227 484
8 Guardians of the

Galaxy 1
2014 7251 1174 8295 1779 1096 603 1250 529

9 Guardians of the
Galaxy 2

2017 8146 1290 9405 1824 1224 626 1370 532

10 Incredibles 2003 6926 1521 9430 1954 1226 652 1557 591
11 Lord of the Rings

1
2001 13699 1514 10566 1998 1473 679 1487 598

12 Lord of the Rings
2

2002 14131 1716 11041 2065 1588 743 1619 646

13 Megamind 2010 5735 1472 8891 1726 1172 602 1347 496
14 Sesame Street Ep.

3990
2016 3440 860 4220 787 717 231 706 217

15 Shrek the Third 2007 5568 1063 7226 1590 977 568 1071 422
16 Spiderman: Far

From Home
2019 7764 1930 12189 1969 1459 668 1785 560

17 Spiderman:
Homecoming

2017 8008 2196 12295 2066 1583 777 1808 572

18 The Martian 2015 9081 1570 11374 2192 1757 812 1677 622
19 Thor: Ragnarok 2017 7831 1583 9683 1789 1195 599 1419 548
20 Toy Story 1 1995 4863 1320 7216 1510 1019 548 1027 395
21 Venom 2018 6727 1379 7937 1513 897 507 1217 433

Supplementary Table 7: Language statistics for all movies. Columns from left to right are the movie’s ID, name,
year of production, length (seconds), number of sentences, number of words (tokens), number of unique words (types),
number of nouns, number of unique nouns, number of verbs and number of unique verbs. Table adapted from Wang
et al. (2024).
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G Composition of movies by volume

Ant Man - 117 min Aquaman - 136 min Avengers Infinity War - 149 min

Black Panther - 134 min Cars 2 - 98 min Coraline - 94 min

Fantastic Mr Fox - 80 min Guardians Of The Galaxy - 121 min Guardians Of The Galaxy 2 - 136 min

Incredibles - 108 min Lotr 1 - 200 min Lotr 2 - 214 min

Megamind - 89 min Sesame Street Episode 3990 - 56 min Shrek The Third - 82 min

Spider Man 3 Homecoming - 133 min Spider Man Far From Home - 129 min The Martian - 145 min

Thor Ragnarok - 123 min
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Supplementary Figure 5: Volume comparison across movies. The black line shows the normalized audio volume
over time for 18 feature-length films and one TV episode shown to subjects. Below each volume trace, colored bars
indicate periods of relatively low (red) and high (blue) volume, defined as the bottom 25% and top 25% of volume
values respectively.
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H Electrode locations

Subject 1   (N=3 sessions; N=130 electrodes) Subject 2   (N=7 sessions; N=135 electrodes)

Subject 3   (N=3 sessions; N=124 electrodes) Subject 4   (N=3 sessions; N=185 electrodes)

Subject 5   (N=1 sessions; N=140 electrodes) Subject 6   (N=3 sessions; N=161 electrodes)

Subject 7   (N=2 sessions; N=240 electrodes) Subject 8   (N=1 sessions; N=153 electrodes)

Subject 9   (N=1 sessions; N=99 electrodes) Subject 10   (N=2 sessions; N=207 electrodes)

Supplementary Figure 6: Electrode locations across subjects. Brain reconstructions showing electrode placement and
speech-selective responses for all 10 subjects. Each dot represents an electrode. Only non-corrupted electrodes are
included in this figure.
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I Face distribution
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Supplementary Figure 7: Distribution of faces detected per frame across different movies. Histograms show the
number of words (y-axis) that occur during frames containing different numbers of faces (x-axis) for 18 feature-length
films and one TV episode (Sesame Street) used in BrainTreebank.

J Compute requirements

Every Linear regression was run on a CPU-only instance, with 2 virtual CPU cores and 64GB RAM for the population
level results and 2 CPU cores with 6GB RAM for the single electrode decoding results. For BrainBERT, the necessary
resources also included a GPU with at least 9GB of memory along with 128GB of RAM and 2 CPU cores. For the
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PopulationTransformer, the fine-tuning was done on 2 GPUs (NVIDIA GeForce GTX TITAN X) with at least 12GB of
GPU RAM.

K Leaderboard

Supplementary Figure 8: The leaderboard for the task of classifying sentence onset. The public webpage link
will be made available upon publication. Submissions will be submitted to our github repository. Once accepted,
the performance numbers will be displayed on the public leaderboard. Submissions will consist of either the single-
electrode-level or population-level performances. Submitters can choose to submit either one or both. Leaderboard
placement will be determined by results on the cross-session split, but the other splits will be displayed as well.
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Supplementary Figure 9: Spatio-temporal course of decodability This is the same information as Figure 6, but for
all tasks. Each row shows the spatio-temporal course of decodability for a given task. Each column shows one time
slice.
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Supplementary Figure 10: Supplementary Figure 9 continued.
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L Region analysis

Supplementary Figure 11: The same information as in Figure 4 is displayed, but aggregated according to the Destrieux
atlas.
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